Updating predict function to output wether raw output layer maximum number or class

This commit is contained in:
chabisik 2022-01-15 22:49:02 +01:00
parent 77be210265
commit cf48d29892
3 changed files with 97 additions and 50 deletions

View file

@ -16,27 +16,18 @@ int main(int argc, char *argv[])
cout << "Bonjour et bienvenu" << endl; cout << "Bonjour et bienvenu" << endl;
Network network(3, 3); Network network(15, 3);
network.forward({1.0,1.0,1.0}, {1.0,2.0,3.0});
network.print(); network.print();
cout << endl << endl;
/*Neuron n(3), n1(1), n2(1), n3(1); for(int episode=1;episode<=100000;episode++)
forward_list<Neuron> fl;
fl.push_front(n1);
fl.push_front(n2);
fl.push_front(n3);
forward_list<Neuron>::iterator it(fl.begin());
n.activate(it, LINEAR);
cout << "weighted sum = " << n.get_weighted_sum() << endl;*/
/*list<float> l;
l.push_back(1.0);
l.push_back(2.0);
l.push_back(3.0);
for(list<float>::reverse_iterator it(l.rbegin()) ; it!=l.rend() ; ++it)
{ {
cout << *it << endl; network.forward({1.0,1.0,1.0}, {1.0,2.0,3.0});
}*/ network.backward(0.001);
}
//network.print();
cout << endl << endl;
network.print();
cout << "verdict : " << network.predict({1.0,1.0,1.0},false) << endl;
return 0; return 0;
} }

View file

@ -2,6 +2,7 @@
#include <ctime> #include <ctime>
#include <cmath> #include <cmath>
#include <forward_list> #include <forward_list>
#include <algorithm>
#include "myclasses.h" #include "myclasses.h"
using namespace std; using namespace std;
@ -19,29 +20,14 @@ Neuron::Neuron(int prev_layer_size)
derror = 0.0; derror = 0.0;
} }
void Neuron::set_activated_output(float value) void Neuron::set_bias(float value)
{ {
activated_output = value; bias = value;
} }
float Neuron::get_weighted_sum() float Neuron::get_bias()
{ {
return weighted_sum; return bias;
}
float Neuron::get_activated_output()
{
return activated_output;
}
void Neuron::set_derror(float value)
{
derror = value;
}
float Neuron::get_derror()
{
return derror;
} }
void Neuron::set_nth_weight(int n, float value) void Neuron::set_nth_weight(int n, float value)
@ -68,6 +54,31 @@ float Neuron::get_nth_weight(int n)
return *current_weight; return *current_weight;
} }
float Neuron::get_weighted_sum()
{
return weighted_sum;
}
void Neuron::set_activated_output(float value)
{
activated_output = value;
}
float Neuron::get_activated_output()
{
return activated_output;
}
void Neuron::set_derror(float value)
{
derror = value;
}
float Neuron::get_derror()
{
return derror;
}
void Neuron::activate(forward_list<Neuron>::iterator &prev_layer_it, Activ activ_function) void Neuron::activate(forward_list<Neuron>::iterator &prev_layer_it, Activ activ_function)
{ {
weighted_sum = bias; weighted_sum = bias;
@ -211,24 +222,67 @@ bool Network::backward(float learning_rate)
{ {
list<forward_list<Neuron>>::reverse_iterator temp_prev_layer = current_layer; //temp_prev_layer set at current layer list<forward_list<Neuron>>::reverse_iterator temp_prev_layer = current_layer; //temp_prev_layer set at current layer
temp_prev_layer++; //temp_prev_layer set now at previous layer temp_prev_layer++; //temp_prev_layer set now at previous layer
int neuron_counter=0;
for(forward_list<Neuron>::iterator current_neuron(current_layer->begin()) ; current_neuron!=current_layer->end() ; ++current_neuron) for(forward_list<Neuron>::iterator current_neuron(current_layer->begin()) ; current_neuron!=current_layer->end() ; ++current_neuron)
{//inside current neuron {//inside current neuron
neuron_counter++; int neuron_counter=0;
for(forward_list<Neuron>::iterator prev_layer_current_neuron(temp_prev_layer->begin()) ; prev_layer_current_neuron!=temp_prev_layer->end() ; ++prev_layer_current_neuron) for(forward_list<Neuron>::iterator prev_layer_current_neuron(temp_prev_layer->begin()) ; prev_layer_current_neuron!=temp_prev_layer->end() ; ++prev_layer_current_neuron)
{ {
//current_neuron->set_nth_weight() neuron_counter++;
current_neuron->set_derror( current_neuron->get_derror()+prev_layer_current_neuron->get_derror()*prev_layer_current_neuron->get_nth_weight(neuron_counter) ); current_neuron->set_nth_weight( neuron_counter, current_neuron->get_nth_weight(neuron_counter)-learning_rate*current_neuron->get_derror()*prev_layer_current_neuron->get_activated_output() );
} }
current_neuron->set_bias( current_neuron->get_bias()-learning_rate*current_neuron->get_derror() );
} }
} }
} }
return true; return true;
} }
float Network::predict(const std::vector<float> &input) bool neuron_cmp(Neuron a, Neuron b){return a.get_activated_output()<b.get_activated_output();}
float Network::predict(const std::vector<float> &input, bool as_raw)
{ {
return 0.0; int layer_counter = 0;
for(list<forward_list<Neuron>>::iterator current_layer(layers.begin()) ; current_layer!=layers.end() ; ++current_layer)
{//inside current layer
layer_counter++;
if(layer_counter==1)
{
int i=0;
for(forward_list<Neuron>::iterator current_neuron(current_layer->begin()) ; current_neuron!=current_layer->end() ; ++current_neuron)
{//inside current neuron
current_neuron->set_activated_output( input.at(i) );
i++;
}
}else if(layer_counter==layers.size())
{
list<forward_list<Neuron>>::iterator temp = current_layer;
temp--; //previous layer
for(forward_list<Neuron>::iterator current_neuron(current_layer->begin()) ; current_neuron!=current_layer->end() ; ++current_neuron)
{//inside current neuron
forward_list<Neuron>::iterator prev_layer_it(temp->begin());
current_neuron->activate(prev_layer_it, o_activ);
}
}else
{
list<forward_list<Neuron>>::iterator temp_prev_layer = current_layer; //temp_prev_layer set at current layer
temp_prev_layer--; ////temp_prev_layer set now at previous layer
for(forward_list<Neuron>::iterator current_neuron(current_layer->begin()) ; current_neuron!=current_layer->end() ; ++current_neuron)
{//inside current neuron
forward_list<Neuron>::iterator prev_layer_it(temp_prev_layer->begin());
current_neuron->activate(prev_layer_it, h_activ);
}
}
}
list<forward_list<Neuron>>::iterator output_layer = layers.end(); output_layer--;
if(as_raw)
{
return max_element(output_layer->begin(), output_layer->end(), neuron_cmp)->get_activated_output();
}else
{
return distance( output_layer->begin(), max_element(output_layer->begin(),output_layer->end(),neuron_cmp) );
}
} }
void Network::print() void Network::print()

View file

@ -15,15 +15,15 @@ class Neuron
{ {
public: public:
Neuron(int prev_layer_size); //prev_layer_size = number of weights Neuron(int prev_layer_size); //prev_layer_size = number of weights
//void set_weighted_sum(float weighted_sum); void set_bias(float value);
float get_bias();
void set_nth_weight(int n, float value);
float get_nth_weight(int n);
float get_weighted_sum(); float get_weighted_sum();
void set_activated_output(float value); void set_activated_output(float value);
float get_activated_output(); float get_activated_output();
void set_derror(float value); void set_derror(float value);
float get_derror(); float get_derror();
void set_nth_weight(int n, float value);
float get_nth_weight(int n);
//std::forward_list<float> &get_weights();
void activate(std::forward_list<Neuron>::iterator &prev_layer_it, Activ activ_function=LINEAR); void activate(std::forward_list<Neuron>::iterator &prev_layer_it, Activ activ_function=LINEAR);
private: private:
std::forward_list<float> weights; std::forward_list<float> weights;
@ -40,12 +40,14 @@ public:
Network(int n_layers, int n_neurons); Network(int n_layers, int n_neurons);
Network(const std::vector<int> &n_neurons, Activ h_activ=RELU, Activ o_activ=SIGMOID); Network(const std::vector<int> &n_neurons, Activ h_activ=RELU, Activ o_activ=SIGMOID);
float predict(const std::vector<float> &input);
float predict(const std::vector<float> &input, bool as_raw=true);
void print(); void print();
//to be deleted //to be deleted
bool forward(const std::vector<float> &input, const std::vector<float> &target); bool forward(const std::vector<float> &input, const std::vector<float> &target);
bool set_errors(const std::vector<float> &target); bool set_errors(const std::vector<float> &target);
bool backward(float learning_rate);
private: private:
std::list<std::forward_list<Neuron>> layers; std::list<std::forward_list<Neuron>> layers;
Activ h_activ; Activ h_activ;
@ -53,7 +55,7 @@ private:
//bool forward(const std::vector<float> &input, const std::vector<float> &target); //bool forward(const std::vector<float> &input, const std::vector<float> &target);
//bool set_errors(const std::vector<float> &target); //bool set_errors(const std::vector<float> &target);
bool backward(float learning_rate); //bool backward(float learning_rate);
}; };