Adding ANN print function
This commit is contained in:
parent
26ae13b72e
commit
639694d05c
3 changed files with 44 additions and 46 deletions
6
main.cpp
6
main.cpp
|
@ -4,7 +4,7 @@
|
|||
#include "myclasses.h"
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include <iterator>
|
||||
using namespace std;
|
||||
|
||||
|
||||
|
@ -26,6 +26,8 @@ int main(int argc, char *argv[])
|
|||
|
||||
n0.activate(it);
|
||||
cout << "is = " << n0.get_output() << endl;*/
|
||||
Network(4, 5);
|
||||
|
||||
Network network(4, 5);
|
||||
network.print();
|
||||
return 0;
|
||||
}
|
||||
|
|
|
@ -6,13 +6,12 @@
|
|||
|
||||
using namespace std;
|
||||
|
||||
Neuron::Neuron(int prev_layer_size, Activ activ_function)
|
||||
Neuron::Neuron(int prev_layer_size)
|
||||
{
|
||||
for(int i(1) ; i<=prev_layer_size ; i++)
|
||||
{
|
||||
weights.push_front(Tools::get_random(0.0, 1.0));
|
||||
}
|
||||
activ = activ_function;
|
||||
bias = 0.1;
|
||||
output = 0.0;
|
||||
derror = 0.0;
|
||||
|
@ -23,16 +22,16 @@ void Neuron::set_output(float value)
|
|||
output = value;
|
||||
}
|
||||
|
||||
void Neuron::activate(forward_list<Neuron>::iterator &prev_layer_it)
|
||||
void Neuron::activate(forward_list<Neuron>::iterator &prev_layer_it, Activ activ_function)
|
||||
{
|
||||
set_output(bias);
|
||||
output = bias;
|
||||
for(forward_list<float>::iterator it(weights.begin()) ; it!=weights.end() ; ++it)
|
||||
{
|
||||
output += (*it) * ((*prev_layer_it).output);
|
||||
prev_layer_it++;
|
||||
}
|
||||
|
||||
switch(activ)
|
||||
switch(activ_function)
|
||||
{
|
||||
case RELU:
|
||||
output = (output > 0.0) ? output : 0.0;
|
||||
|
@ -66,13 +65,13 @@ Network::Network(int n_layers, int n_neurons)
|
|||
{
|
||||
if(i==1)
|
||||
{
|
||||
current_layer.push_front( Neuron(0, LINEAR) );
|
||||
current_layer.push_front( Neuron(0) );
|
||||
}else if(i==n_layers)
|
||||
{
|
||||
current_layer.push_front( Neuron(n_neurons, SIGMOID) );
|
||||
current_layer.push_front( Neuron(n_neurons) );
|
||||
}else
|
||||
{
|
||||
current_layer.push_front( Neuron(n_neurons, RELU) );
|
||||
current_layer.push_front( Neuron(n_neurons) );
|
||||
}
|
||||
}
|
||||
layers.push_back(current_layer);
|
||||
|
@ -90,13 +89,13 @@ Network::Network(const std::vector<int> &n_neurons, Activ h_activ, Activ o_activ
|
|||
{
|
||||
if(i==0)
|
||||
{
|
||||
current_layer.push_front( Neuron(0, LINEAR) );
|
||||
current_layer.push_front( Neuron(0) );
|
||||
}else if(i==n_neurons.size()-1)
|
||||
{
|
||||
current_layer.push_front( Neuron(n_neurons[i-1], o_activ) );
|
||||
current_layer.push_front( Neuron(n_neurons[i-1]) );
|
||||
}else
|
||||
{
|
||||
current_layer.push_front( Neuron(n_neurons[i-1], h_activ) );
|
||||
current_layer.push_front( Neuron(n_neurons[i-1]) );
|
||||
}
|
||||
}
|
||||
layers.push_back(current_layer);
|
||||
|
@ -112,50 +111,48 @@ void Network::print()
|
|||
cout << "#>>==========================================<<#" << endl;
|
||||
cout << ">> Number of layers : " << layers.size() << endl;
|
||||
cout << "------------------------------------------------" << endl;
|
||||
int layer_counter = 0;
|
||||
int prev_layer_size_temp = 0, params_counter = 0;
|
||||
for(list<forward_list<Neuron>>::iterator it1(layers.begin()) ; it1!=layers.end() ; ++it1)
|
||||
{
|
||||
layer_counter++;
|
||||
int current_layer_size = 0;
|
||||
for(forward_list<Neuron>::iterator it2(it1) ; it2!=it1.end() ; ++it2)
|
||||
for(forward_list<Neuron>::iterator it2(it1->begin()) ; it2!=it1->end() ; ++it2)
|
||||
{
|
||||
current_layer_size++;
|
||||
}
|
||||
if(i==0)
|
||||
if(layer_counter==1)
|
||||
{
|
||||
prev_layer_size_temp = current_layer_size;
|
||||
}
|
||||
else
|
||||
{
|
||||
params_counter += (prev_layer_size_temp+1)*current_layer_size;
|
||||
prev_layer_size_temp = current_layer_size;
|
||||
}
|
||||
if(layer_counter==1)
|
||||
{
|
||||
cout << ">> Input layer" << endl;
|
||||
cout << "size : " << layers << endl;
|
||||
cout << "size : " << current_layer_size << endl;
|
||||
cout << "neurons' outputs : ";
|
||||
temp = network->layers_first_neurons[i];
|
||||
while(temp != NULL)
|
||||
{
|
||||
cout << ("%f ", temp->output);
|
||||
temp = temp->same_layer_next_neuron;
|
||||
}
|
||||
cout << ("\n");
|
||||
}else if(i==layers.size()-1)
|
||||
for(forward_list<Neuron>::iterator it2(it1->begin()) ; it2!=it1->end() ; ++it2){it2->get_output();}
|
||||
cout << endl;
|
||||
}else if(layer_counter==layers.size())
|
||||
{
|
||||
cout << (">> Output layer\n");
|
||||
cout << ("size : %d\n", network->neurons_per_layer[i]);
|
||||
cout << "size : " << current_layer_size << endl;
|
||||
cout << ("neurons' outputs : ");
|
||||
temp = network->layers_first_neurons[i];
|
||||
while(temp != NULL)
|
||||
{
|
||||
cout << ("%f ", temp->output);
|
||||
temp = temp->same_layer_next_neuron;
|
||||
}
|
||||
cout << ("\n");
|
||||
for(forward_list<Neuron>::iterator it2(it1->begin()) ; it2!=it1->end() ; ++it2){it2->get_output();}
|
||||
cout << endl;
|
||||
}else
|
||||
{
|
||||
cout << (">> Hidden layer %d\n", i);
|
||||
cout << ("size : %d\n", network->neurons_per_layer[i]);
|
||||
cout << ">> Hidden layer " << layer_counter-1 << endl;
|
||||
cout << "size : " << current_layer_size << endl;
|
||||
}
|
||||
cout << ("------------------------------------------------\n");
|
||||
cout << "------------------------------------------------" << endl;
|
||||
}
|
||||
cout << ("Number of parameters : ");
|
||||
for(i=1 ; i<network->n_layers ; i++)
|
||||
{
|
||||
n_params += network->neurons_per_layer[i] * (network->neurons_per_layer[i-1] + 1);
|
||||
}
|
||||
cout << ("%d\n", n_params);
|
||||
cout << "Number of parameters : ";
|
||||
cout << params_counter << endl;
|
||||
cout << "#>>==========================================<<#" << endl << endl;
|
||||
}
|
||||
|
||||
|
|
|
@ -8,22 +8,21 @@
|
|||
|
||||
enum Activ
|
||||
{
|
||||
RELU, TANH, SIGMOID, LINEAR
|
||||
RELU, TANH, SIGMOID, LINEAR, SOFTMAX
|
||||
};
|
||||
|
||||
class Neuron
|
||||
{
|
||||
public:
|
||||
Neuron(int prev_layer_size, Activ activ_function);
|
||||
Neuron(int prev_layer_size); //prev_layer_size = number of weights
|
||||
void set_output(float value);
|
||||
float get_output();//to be deleted
|
||||
void activate(std::forward_list<Neuron>::iterator &prev_layer_it);
|
||||
void activate(std::forward_list<Neuron>::iterator &prev_layer_it, Activ activ_function=LINEAR);
|
||||
private:
|
||||
std::forward_list<float> weights;
|
||||
float bias;
|
||||
float output;
|
||||
float derror;
|
||||
Activ activ;
|
||||
};
|
||||
|
||||
|
||||
|
@ -32,7 +31,7 @@ class Network
|
|||
public:
|
||||
Network(int n_layers, int n_neurons);
|
||||
Network(const std::vector<int> &n_neurons, Activ h_activ=RELU, Activ o_activ=SIGMOID);
|
||||
void print() const;
|
||||
void print();
|
||||
bool forward(const std::vector<float> &input, const std::vector<float> &target);
|
||||
bool backward();
|
||||
private:
|
||||
|
|
Loading…
Reference in a new issue