cbasedann/training.c

61 lines
2 KiB
C

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "randomness.h"
#include "activations.h"
#include "neurons.h"
#include "network.h"
#include "preprocessing.h"
#include "training.h"
void forward(Network *network, Sample *sample)
{
Feature *current_feature;
Neuron *current_neuron, *prev_layer_current_neuron;
Weight *current_weight;
int i;
for(i=0 ; i<network->n_layers ; i++)
{
if(i==0) //set first layer neurons' output equal to sample's features
{
current_feature = sample->first_feature;
current_neuron = network->layers_first_neurons[i];
while(current_neuron != NULL)
{
current_neuron->output = current_feature->value;
current_feature = current_feature->next_feature;
current_neuron = current_neuron->same_layer_next_neuron;
}
}else //when layer not first one, do dot product sum with bias
{
current_neuron = network->layers_first_neurons[i];
while(current_neuron != NULL)
{
prev_layer_current_neuron = network->layers_first_neurons[i-1];
current_neuron->output = current_neuron->bias;
current_weight = current_neuron->weights;
while(prev_layer_current_neuron != NULL)
{
current_neuron->output += prev_layer_current_neuron->output*current_weight->value;
current_weight = current_weight->next;
prev_layer_current_neuron = prev_layer_current_neuron->same_layer_next_neuron;
}
current_neuron->output = current_neuron->activation( current_neuron->output ); //apply activation function
current_neuron = current_neuron->same_layer_next_neuron;
}
}
}
}
void errors_propagate(Network *network, Sample *sample)
{
}
void backpropagate(Network *network, float learning_rate)
{
}