MiddleWare for the IoT
TP N°1
BERRADA El Ghali

BERTA Pauline
CONCEICAO NUNES Joao

THEORICAL PART
Based on web resources and the previous course respond to those questions:

- What is the typical architecture of an IoT system based on the MQTT protocol?

The typical architecture of a system based on the MQTT protocol is a system with
multiple sensors with variable IP addresses, because they move in space, for example, and
change networks often. The architecture also englobes multiple clients and servers, and the
MQTT protocol allows everything to be managed and centralised by a “broker” that
coordinates every connection and information exchange.

» What is the IP protocol under MQTT? What does it mean in terms of bandwidth usage, type
of communication, etc ?

The IP protocol under MQTT normally is TCP. But every protocol that usually
provides ordered, lossless, bi-directional connection can support MQTT. It's designed for
connection with remote locations where a “small code footprint” is required and also where
the network bandwidth is limited, so it can be used on low power and low bandwidth
networks.

* What are the different versions of MQTT?
e MQTTv3.1.0
e MQTTv3.1.1-Incommon Use
e MQTT Version 5, last version. Currently limited Use
e MQTT-SN, designed to run over UDP, ZigBee etc. Not very popular but will certainly
become more useful now that IoT is taking off.

« What kind of security/authentication/encryption are used in MQTT?
MQTT supports x509 client certificates, that is the most secure method of client
authentication.
For data security, TLS and SSL security is supported, as well as Payload encryption.
The data is encrypted at the application level, and not by the brocker, so it means that the
data is encrypted “end to end” and not just between the brocker and the client.

« Suppose you have devices that include one button, one light and luminosity sensor. You
would like to create a smart system for you house with this behavior:

+ you would like to be able to switch on the light manually with the button

« the light is automatically switched on when the luminosity is under a certain value
What different topics will be necessary to get this behavior and what will the connection be
in terms of publishing or subscribing?

The topics:
e Button state
e Lum limit state
The connections will be between the light sensor and the lum limit state, the button and the
button state for the publishing type of connection. The light would be the client and would
subscribe to these two topics. That way it will receive every message and will update
accordingly.

PRACTICAL PART
STEPn’1:
Installation of Mosquitto.
Run the broker with the file.exe.
Test the command mosquitto_pub and mosquitto_sub.

Command mosquitto_sub:
mosquitto_sub -t button/# -v

We use the command to subscribe and listen if a message is arriving.

Command mosquitto_pub:
mosquitto_pub -m “test message” -t button/jaune

We use the command to send a message in a topic “jaune” contained in the button.

T Window: 10.0.19041,508 _
(c) 2020 Microsoft COrporation Tous droits réserveés.

C:\Program Files\mosquitto> mosquitto_pub -m "test message" -t button/jaune

C:\Program Files\mosquitto>

Reception:

y 10.0.19041.503))
2020 M1crosoft Corporat1on Tous droits réservés.

:\Program Files\mosquitto>mosquitto_sub -t button/# -v

button/jaune test message

STEPn°2:
We installed the Arduino IDE and opened an example that we can find on the library
arduinoMqtt, which is named connectESP8266wificlient.

* Give the main characteristics of nodeMCU board in terms of communication,
programming language, Inputs/outputs capabilities.

The ESP8266 is a microcontroller 32 bits, which integrates the IEEE 802.11 b/g/n
Wi-Fi standard. The nodeMCU board needs between 3.0V and 3.6V to operate, there are 16
inputs/outputs (GPIO).
We have here an image retracing the inputs/outputs capabilities :

ESP-12E
PINOUT

w%
RERBBOTIC

itlagiabalbs £ dm

B1-J1-FO1&

IEEEY srIHD usriup

5 sPInE sseiwe

T _Emm SPI_MO5T 1RXD

EEIERE—
"&' vorrs [EEEE] EEEIE T el
u1TXD [EEEE L — pe)
331_¢:s1m]
EEmE- e

EFEHE —
UoRxD EEGE FH —be!

ser_cs1 yorxo [EEEEE —

o4 @— [sxr_psme

HOTES:

B = oWER Bl sE. FUNCTION(S) ambaard & Typ. pin currant Bl (Max, 12mA)
o COMM. INTERFACE e Far glaep mode, connest GRIDTE and
B Aoc B PIn HUMBER FE:'.T?UB 0 wakiun, GFICT 6 will oulpit
L of gyatam radal
COHTROL 1}" FHM b On Eoob/resetfwakeup, keep GPIO1TS LOW
Juie and GPIOZ2 HIGH

About configuration, we can program the module with several languages :
- Commandes AT
- ESP8266 SDK
- Lua (NodeMCU)
- C/C++ (Arduino)
- MicroPython
- Javascript

MQTT information :

We send a message from the wireless router to the electronic card, then the message
is sent to the broker that we have installed on the computer.
The mosquitto broker manages a set of topics. A topic can be described as a queue of
messages.
Basically the broker centralises the information sent by the publishers so that everything is
available for every subscriber. The publisher is a sensor and the subscriber a client, like a
server on the cloud.

STEPNn’3:
Creation of an application
Blocs that we have modified from the example.

Bloc Configuration
// Setup WiFi network
WiFi.mode (WIFI_STA);
WiFi.hostname ("ESP_" MOTT 1ID);
WiFi.begin{"Cisco38658", "");
LOG PRINTFLMN {"\n");
LOG PRINTFLN("Connecting to WiFi");

while ({(WiFi.status(} != WL CONNECTED) {
delay (500) ;
LOG_ PRINTFLN(".");
}
LOG PRINTFLN ("Connected to WiFi™);
LOG PRINTFLN("IP: %s", WiFi.locallIP().toString().c str());
Bloc Sub
{

MgttClient::Error::type rc = mgtt—>subscribe (
MOTT TOPIC SUB, MgttClient::Q0S0, processMessage
)3
if {rc != MgttClient::Error::SUCCESS) {
LOG PRINTFLN("Subscribe error: %i", rc);
LOG PRINTFLN("Drop connection");
mgtt—>disconnect () ;

return;

Bloc Pub

it

I

* buf = "Hello™;

ent: :Message message;

i
0
K
=]

Mot

message.qos = MgttClient: :0050;

o
|
Pl
e

message.retained = false;

message.dup = fal:

message.payload = (void*) buf;
message.payloadlen = strlen (buf);
mqtt—}p:bli?h{MQTT_TGPIC_PUE, message) ;

Results that we can observe in the broker Mosquitto.

Mosquitto_sub

C:\Program Files\mosquitto>mosquitto_pub -m "test_message" -t test/TEST-ID/sub

@ com3
|

MOTT - Process message, type: 3
MOQTT - Publish receiwved, gos: 0
MOTT - Deliver message for: test/TEST-ID/sub

Message arrived: gos 0, retained 0, dup 0, packetid 0, payload:[test message]
MQTT - Keepalive, ts: 326287

MOTT - Process message, type: 13

MQTT - EKeepalive ack received, ts: 326561
MQTT - Publish, to: test/TEST-ID/pub, size: 5
MQTT - Yield for 29999 ms

MQTT - Eeepalive, ts: 344282

MQTT - Process message, type: 13

MQTT - EKeepalive ack received, ts: 344438
MQTT - Keepalive, ts: 356288

MOTT - Process message, type: 13

MQTT - Keepalive ack received, ts: 356533

Défilement automatique | | Afficher I'horodatage

Mosquitto_pub

EC:HProgram Files\mosquitto>mosquitto_sub -t test/# -v
[test/TEST-ID/pub Hello
ltest /TEST-ID/pub Hello

Itest /TEST-ID/pub Hello
itest /TEST-ID/pub Hello

The core of the entire program :

#include <Arduino.h>
#tinclude <ESP8266WiFi.h>

// Enable MqttClient logs
#define MQTT_LOG_ENABLED 1
// Include library

#include <MqttClient.h>

#define LOG_PRINTFLN(fmt, ...) logfln(fmt, ##__ VA_ARGS_)
#define LOG_SIZE_MAX 128

#define BUTTON D1

#define SENSOR AOQ

#define LED DO

void logfln(const char *fmt, ...) {
char buf[LOG_SIZE_MAX];
va_list ap;
va_start(ap, fmt);
vsnprintf(buf, LOG_SIZE_MAX, fmt, ap);
va_end(ap);
Serial.println(buf);

#define HW_UART_SPEED 115200L
#define MQTT_ID "TEST-ID"

static MqttClient *mqtt = NULL;

static WiFiClient network;

const char* MQTT_TOPIC_PUB = "test/" MQTT_ID "/pub";

const char* MQTT_TOPIC_SUB = "test/" MQTT_ID "/sub";

const char* MQTT_TOPIC_BUTTON_PUB = "button/" MQTT_ID "/pub";

int buttonOutput = 0;

/[============== Object to supply system functions ============================
class System: public MqgttClient::System {

public:

unsigned long millis() const {
return :millis();

void yield(void) {
yield();

void setup() {
// Setup hardware serial for logging
Serial.begin(HW_UART_SPEED);
while (!Serial);

// Setup WiFi network
WiFi.mode(WIFI_STA);
WiFi.hostname("ESP_" MQTT_ID);
WiFi.begin("Cisco38658", "");
LOG_PRINTFLN("\n");
LOG_PRINTFLN("Connecting to WiFi");
while (WiFi.status() != WL_CONNECTED) {
delay(500);
LOG_PRINTFLN(".");
}
LOG_PRINTFLN("Connected to WiFi");
LOG_PRINTFLN("IP: %s", WiFi.localIP().toString().c_str());

// Setup MqttClient

MgqttClient::System *mqttSystem = new System,;

MqttClient::Logger *mqttLogger = new MqttClient::LoggerImpl<HardwareSerial>(Serial);

MgqttClient::Network * mqttNetwork = new
MgqttClient::NetworkClientImpl<WiFiClient>(network, *mqttSystem);

//// Make 128 bytes send buffer

MgqttClient::Buffer *mqttSendBuffer = new MqttClient::ArrayBuffer<128>();

//// Make 128 bytes receive buffer

MqttClient::Buffer *mqttRecvBuffer = new MqttClient::ArrayBuffer<128>();

//// Allow up to 2 subscriptions simultaneously

MgqttClient::MessageHandlers *mqttMessageHandlers = new
MqttClient::MessageHandlersImpl<2>();

//// Configure client options

MqttClient::Options mqttOptions;

////// Set command timeout to 10 seconds

mgqttOptions.commandTimeoutMs = 10000;

//// Make client object

mgqtt = new MqttClient(

mqttOptions, *mqttLogger, *mqttSystem, *mqttNetwork, *mqttSendBuffer,
*mgqttRecvBuffer, “mqttMessageHandlers

);

// Pin Configuration

pinMode(BUTTON,INPUT);
pinMode(SENSOR, INPUT);
pinMode(LED, OUTPUT);
digitalWrite(LED,HIGH);

subscription qulback BN

void processMessage(MqttClient::MessageData& md) {
const MqttClient::Message& msg = md.message;

char payload[msg.payloadLen + 1];

memcpy(payload, msg.payload, msg.payloadLen);

payload[msg.payloadLen] = '\0";

LOG_PRINTFLN(

"Message arrived: qos %d, retained %d, dup %d, packetid %d, payload:[%s]",

msg.qos, msg.retained, msg.dup, msg.id, payload

void loop() {

// Check connection status

if (Imqtt->isConnected()) {

// Close connection if exists

network.stop();

// Re-establish TCP connection with MQTT broker
LOG_PRINTFLN("Connecting");
network.connect("192.168.1.110", 1883);

if (Inetwork.connected()) {

}

LOG_PRINTFLN("Can't establish the TCP connection");
delay(5000);
ESP.reset();

// Start new MQTT connection

MgqttClient::ConnectResult connectResult;
// Connect

{

MQTTPacket_connectData options = MQTTPacket_connectData_initializer;
options.MQTTVersion = 4&;
options.clientID.cstring = (char*)MQTT_ID;
options.cleansession = true;
options.keepAlivelnterval = 15; // 15 seconds
MqttClient::Error:type rc = mqtt->connect(options, connectResult);
if (rc != MqttClient::Error::SUCCESS) {
LOG_PRINTFLN("Connection error: %i", rc);
return;

MaqttClient:Error:type rc = mqtt->subscribe(
MQTT_TOPIC_SUB, MqttClient::QOS0, processMessage
);
if (rc != MqttClient::Error::SUCCESS) {
LOG_PRINTFLN("Subscribe error: %i", rc);
LOG_PRINTFLN("Drop connection");
mgqtt->disconnect();

return;

}else{

const char* buf = "Hello";

MqttClient::Message message;
message.qos = MqttClient::Q0SO0;
message.retained = false;
message.dup = false;
message.payload = (void*) buf;
message.payloadLen = strlen(buf);
mgqtt->publish(MQTT_TOPIC_PUB, message);

}

mgqtt->yield(3000L);
}

buttonOutput = digitalRead(BUTTON);
if (buttonOutput){
const char® buf = "Button_Pressed";

}
else{
digitalWrite(LED,HIGH);

}
}

MqttClient::Message message;

message.qos = MqttClient::Q0SO0;

message.retained = false;

message.dup = false;

message.payload = (void*) buf;

message.payloadLen = strlen(buf);
mgqtt->publish(MQTT_TOPIC_BUTTON_PUB, message);

digitalWrite(LED,LOW);

Sources:

Wikipedia

http://www.steves-internet-guide.com/mqtt/
https://www.hivemq.com/blog/maqtt-essentials-part-5-mgqtt-topics-best-practices/#:~:text=
In%20MQTT%2C%20the%20word%20topic, MQTT%20topics%20are%20very%20lightweight

Links use during the TP :

https://mosquitto.org/man/mosquitto sub-1.html
http://www.steves-internet-quide.com/mosquitto_pub-sub-clients/

http://www.steves-internet-quide.com/understanding-maqtt-topics/#:~:text=%20Understan

ding%20MQTT%20Topics%20%201%20The%20%24SYS,publish%20t0%20an%20individual%
20topic.%20That...%20More%20

http://www.steves-internet-guide.com/mqtt/
https://www.hivemq.com/blog/mqtt-essentials-part-5-mqtt-topics-best-practices/#:~:text=In%20MQTT%2C%20the%20word%20topic,MQTT%20topics%20are%20very%20lightweight
https://www.hivemq.com/blog/mqtt-essentials-part-5-mqtt-topics-best-practices/#:~:text=In%20MQTT%2C%20the%20word%20topic,MQTT%20topics%20are%20very%20lightweight
https://mosquitto.org/man/mosquitto_sub-1.html
http://www.steves-internet-guide.com/mosquitto_pub-sub-clients/
http://www.steves-internet-guide.com/understanding-mqtt-topics/#:~:text=%20Understanding%20MQTT%20Topics%20%201%20The%20%24SYS,publish%20to%20an%20individual%20topic.%20That...%20More%20
http://www.steves-internet-guide.com/understanding-mqtt-topics/#:~:text=%20Understanding%20MQTT%20Topics%20%201%20The%20%24SYS,publish%20to%20an%20individual%20topic.%20That...%20More%20
http://www.steves-internet-guide.com/understanding-mqtt-topics/#:~:text=%20Understanding%20MQTT%20Topics%20%201%20The%20%24SYS,publish%20to%20an%20individual%20topic.%20That...%20More%20

