

CLOUD COMPUTING : ​Adaptability and Autonomic
Management

GEI 2020 - 2021

Introduction to Cloud Hypervisors

BERTA Pauline

BERRADA Ghali

CONCEICAO NUNES Joao

5ISS – Promo 54

Table of Contents

I – Theoretical Part 3

Similarities and differences between the main virtualisation hosts (VM et CT) 3

Similarities and differences between the existing CT types 5

Similarities and differences between Type 1 & Type 2 of hypervisor’s
architectures 6

II – Practical part 7

Creating a VirtualBox VM (in NAT mode), and setting up the network to enable
two-way communication with the outside 7

Clone the VM 10

Docker containers provisioning 10

CT creation and configuration on OpenStack 13

Snapshot, restore and resize a VM 18

Openstack client installation 18

Web-2-tier application topology and specification 19

Deploy the Calculator application on OpenStack 20

Conclusion 21

I – Theoretical Part

Similarities and differences between the main virtualisation hosts (VM et CT)
When we work with cloud computing technologies we have a large panel of different
solutions available. For this Lab we will take a closer look to VM and CT technologies.

The ​main difference is the fact that with a VM we can manage different OS,
named “guest OS” controlled by the Hyper Supervisor that runs on the “Host OS”.
This means the VM gives the ability to switch from OS to OS without having to reboot
the computer, and use different apps with every VM, or the same app but cloned on
each VM. Those apps will evolve totally independently. On the other hand CT, is like
a normal single boot, only one OS is running but can run different apps, isolated
from each other.

Let’s compare the two technologies with the board below:

1

Comparison factor Virtual Machine Container
Virtualization cost The physical hardware

from the host machine is
virtualized for each VM,
and creates the virtual
resources used by each
VM, exclusively.

The physical hardware
isn’t virtualized and
reserved to a specific CT.
All the hardware is
available and used to run
the different configured
CT.

Usage of CPU The CPU usage is divided
between the different VM
running.

No division needed.

Security The fact everything is
divided provides a clean

There isn’t any guest OS,
so everything that is done

We can see that these two technologies have very different ways of working and
each one has its own advantages and disadvantages, so let’s compare them with two
different points of view.

From the ​server administrator’s​ point of view :

The server admin usually wants to ensure that the system runs properly and
so security is one of his priorities. The VM is the only technology allowing to
separate everything and ensure that if there is a problem somewhere, it will not
spread to the entire system.

But the VM technology can be used with CT’s because if the server admin wants to
add more speed to the system he can organize the server by implementing different
VMs with different CTs inside. This will combine the security and speed aspect by
separating every CT group inside each VM.

From the ​developer’s point​ of view :

The VM allows the developer to run/develop on different OS using the same
machine and without having to reboot at each time. But the fact of using a VM,
divides the memory and performance available, making the overall performance
less important. So, it depends if the developer is looking for practicality or
performance. If performance is what he wants, the CT technology is the right
solution but it will not allow him to work on different OS’s at the same time.

The separation provided by the VM means that every software running on the guest
OS only has the right to write on the guest OS files and not the host OS files. That

2

separation on the
software and increases
the security level.
The host OS is separated
from the guest OS, and
every file on the host OS
isn’t reachable from the
guest OS.

on the host OS will be
permanent. The
separation is only
between containers.

Performance The CPU and memory
available are divided
between each VM, so the
overall performance
decreases. The response
time is higher.

All the CPU and memory
is available for each CT.
The response time is
lower.

Continuous integration
support

Not available Available and commonly
used in the development
world.

keeps every important file safe, and gives the developer a secure environment to
work.

Similarities and differences between the existing CT types
Now that we have compared the VM and CT technology we will take a closer look to
the different CT services.

For Linux Container, ​LXC ​:

Linux LXC is an OS level virtualization process, multiple isolated Linux
containers can be run at the same time on a single control host. This CT technology is
based on the concept of Linux control groups, the cgroups. LXC provides a virtual
environment which offers isolation between each control group, which provides
applications with complete isolation of resources, including CPU, memory and I/O
accesses. The LXC behaves like a VM process, and it means that the containerization
level of LXC is the OS level.

Each LXC container can be used as a sandbox, which gives the developer an easier
development environment, capable of holding errors.

For ​Docker containers ​ :

Docker is based on the Linux containers, it is used to add higher level
capabilities, to build single application containers. This CT technology builds
containers using read only layers of the file system and allows applications to be
developed and deployed more quickly, using fewer resources. The containerization
level of the Docker technology is at the application level.

Because docker containers come with multiple services like integration tools, it
makes them an optimized and easier solution to applications for the cloud. The main
advantage of Docker is that it is an engine for containers that packs all the
applications, along with the dependencies. That means that docker is a portable
solution.

3

But because each container is managed by the same OS, an attack on that OS can
damage the entire container's network.

Similarities and differences between Type 1 & Type 2 of hypervisor’s architectures
The next step in our theoretical analysis is to compare the two types of Hypervisors
architecture.

The ​Type1 hypervisor ​, is basically the only layer of software directly installed
on top of the physical server. The particularity is that Type 1 hypervisors are OS
themselves so they are often more performant and stable because they don’t run
inside another OS. Because of that, the type 1 hypervisor can only run virtual
machines because its OS only can be used to do that. Every other application has to
be run by the virtual OS (guest OS).

In terms of functionalities offered, the Type 1 offers some simple ones. You can
create virtual instances, change the date, the IP address, etc. But you can also
allocate more hardware resources than you actually have. The hypervisor will
dynamically adjust the resources used according to the resources available at the
time.

The ​Type 2 hypervisor ​, called Hosted, has a very different architecture
because they run inside an OS. Basically the hypervisor has one software layer
between it and the hardware, where the Type 1 was directly on the hardware layer.
The Type 2 hypervisor is usually used on a small number of servers, and it’s
convenient because there is no management console needed on another machine to
set it up and manage every VM. All can be directly done on the server where the
hypervisor is installed. It’s exactly the type of hypervisor used on our computer
when we use Virtualbox for example. Our OS (Windows, Linux etc) is the one running
the Type 2 hypervisor for the VM. The problem with this type 2, is that the resources
allocated are not dynamically managed by the hypervisor. If we allocate 8GB of
ram, the VM will take 8GB of RAM. That’s one of the main differences with Type 1. But
type 2 remains convenient for testing because it’s simple to use the same physical
machine with multiple instances and so to execute the code on different instances.

4

II – Practical part

Creating a VirtualBox VM (in NAT mode), and setting up the network to enable
two-way communication with the outside
In this part we’ll use VirtualBox hypervisor in NAT mode to connect a VM to the
network.
If we check the connectivity from the VM to the outside using :

ping facebook.com
With this command we are trying to ping an exterior server by the name of
facebook.com and we can see that the connection is successful. This works because
the connection is made possible by the VM’s NAT, from the VM to the exterior.

If we check the communication from a host from another computer to our
VM, the communication does not work. The physical host and our VM must be on the
same server to communicate.

If we check the communication from our Host to our VM we can see that it does not
work. The problem is that when the communication is set to NAT, the VM does not
have its own IP address within the actual network, it only has the LAN address on
the host. To solve this problem, the network adapter on the VM has to be set to a
bridged connection.

So if we have to summarize the results, we can see that the communication is only
possible from the VM to the exterior, because of the VM’s NAT. But every time we try
to communicate from the exterior to the VM, that’s not possible because the VM does
not have its own IP address on the network. And if we have multiple VM, they will all
have the same IP address, the host IP address.

To solve this problem we have to connect to the host using ssh (port 1234 by default)
and then using ssh again, connect to the VM’s port (port 22 by default) where we
want to send the message. This solution still uses the NAT network configuration

5

and makes it possible to communicate with the VM from the outside without having
its own IP address on the network.

To establish the link we have to configure the VM as follows :

After the port forwarding configuration on the VM’s configuration panel, the SSH
communication has to be set. We used Putty to establish a communication from the
Host to the hosted VM.

We configured as follows :

6

Then, we use our credential to start the connection, and here is the result :

We can see the connection is established between the host and the hosted-VM.
If we create a text file using Putty, we can see it will be created on the VM, as it's
shown below:

Clone the VM
In order to clone the VM we cannot just make a simple copy of it because each copy
would have the same identifier. Each VM has to have its own identifier in the
hypervisor namespace, otherwise VirtualBox will report an error.

So to clone the VM, we placed ourselves on the following file, containing
VBoxManage:

C:\Program Files\Oracle\VirtualBox\VBoxManage.exe in Windows

Next, the following command has to be entered :

7

And that’s it, the VM is cloned, and each VM has its own identifier.

Docker containers provisioning
We start by creating a Docker container, CT1 inside the VM. To do so we use the
following linux command :

In this command line the ​-i ​ is used to attach the STDIN container. If we want to stop
the docker container we’ll have to use the following command, ​sudo docker stop
ct1 ​. Now that the Docker container is created we can check the connectivity.

To start we need the IP address : IP docker ct1 : 172.17.0.1

Then we have to test the connection using the ​ping command, but before doing so,
the command has to be installed on the docker container:

Once every option is installed we proceed with the test :

1- Ping from the docker containers to the exterior. Here we took facebook server as
an example:

8

2- Ping from the docker container to the VM :

3- Ping from the VM to the docker container :

After the test we can conclude that the docker container has no connectivity issue.
We saw that the container is able to communicate with the VM and the VM with the
container, and more important, the docker is able to communicate with an exterior
server.

If we proceed the tests, we can create a second Docker container, using the following
command :

After the creation of the second container we can take an image of the CT2
container, in order to have all the parameters and configuration saved on this
image.

We can do that by using the following command line, with the containers ID :

Docker ID: a590c4ad5ac1, obtained using the following command ​sudo docker ps.

Image Name : 01, using the ​photo: ​ parameter.

9

After the image is created we can stop and erase the last container, with the
following command:

Now we can use the snapshot previously created using the CT2 container to create a
CT3 container. But before that, let’s list the different snapshots available on the VM :

To create the CT3 container using the CT2 snapshot :

If we try to launch ​nano software, we observe that everything is just like it was on
the CT2 container, and that is logical because we created the third container using
the CT2 snapshot.
Every configuration parameter and software initially present on the CT2 container,
is also present on the CT3 container.

After checking the specifications of the CT3 container, created using the CT2
snapshot, we can also check how to create a persistent image of a container. To do
so, we used the following commands:

This means we are creating a ​dockerfile ​inside the VM, with the following
information:

FROM ubuntu

RUN apt update -y

RUN apt install -y nano

CMD ["/bin/bash"]

And finally we built a docker image on another format and saved it inside the
dockerfile ​.

10

Operate proper VMs provisioning with OpenStack and manage the networking
connectivity.

CT creation and configuration on OpenStack
Using Openstack we can create a virtual machine online. To do so, we connected to
Openstack using the following link : ​OpenStack Web interface and used the following
credentials.

INSAT
login
pwd

Before creating the VM online we
had to create a network, otherwise
we would have created the VM on
Openstack's public network (only
admin users can do so).

Our own network has the following IP address : 192.168.0.0/24
Inside our network, we created our new VM, with the following information,

Name : VM
Image Name : alpine-mode
Flavor : small
Network : Notre_network

After the VM is created, the
internet access has to be set.
To configure the internet
access we’ll have to connect
our network to a Router
connecting our network to
the public network.

● Create Router (since the public network), and click on the link created.
● Add an Interface (make the connection between our network and the router)

11

https://os-api-ext.insa-toulouse.fr/horizon/auth/login/

Once the connection is set, we connected to the VM using the following credentials :

Login : root Password : root

Inside the VM terminal we changed the keyboard to AZERTY:

Then we create another VM, this time with Ubuntu4CLV, because it is easier then
alpine_mode for the ssh connection. This VM doesn't have a predefined size because
we don’t need memory space for the ssh connections, we’ll just analyse the
communications way of working.

VM_Sans_Volume : 192.168.0.238

In order to change the keyboard from QWERTY to AZERTY :

12

Then we ping from the VM to the host, to verify if it’s working, and has shown below,
it is.

When we created a private network on OpenStack, it basically created the
equivalent to a sub-network of the INSA’s network, because our host is on INSA’s
network, that’s why the connection works.

Then, if we try to ping from the host to the VM, it does not work, as shown below :

The communication does not work because Openstack gives our private-network, a
fake IP address, and the VM cannot be easily recognized on the network.
In order to solve this issue we have to create a link between our private network IP
address and the fake IP address given to the VM. By doing so, every message
intended for our VM will be relayed by our private network to the VM (Same concept
that what we did earlier with the VirtualBox VM).

We have to establish a link between the IP address on the public network of our
private network and the fake IP address of the VM. This way, the messages received
by our private network will arrive at the VM. To do so, we’ll use floating IP
addresses.

We create the floating address and associated it to our VM :

13

We ping the VM from the host using the floating IP address 192.168.37.96, and it
works:

Then, it’s time to check the SSH communication from the host to the VM with putty
command. By default our VMs port is 22, and it has the IP address on INSAs network
(192.168.37.96). In the other part of this practical exercise we had to use the 1234 port
with VirtualBox because we used the port forwarding technique and our VM did not
have the fake IP address.
From the terminal :

14

Connection credentials :
Login : user
Password : user

It works, so we can communicate in SSH from the host to the VM.

We can see that from the host, we managed to create the text.txt file on the VM.

Snapshot, restore and resize a VM

If we try to resize the VM and reduce its size, this wouldn’t work because the data
would be lost and so it’s protected to prevent that. What we can do is to add more
size and so pass it to ​medium size. ​

15

We can resize the VM either when it is running or not.
“The 2 previous operations highlight the flexibility and the agility that could be
provided thanks to the virtualization setting as it was previously explained during
the lectures.”
With Openstack we can easily reconfigure the VM, the same is not true with
VirtualBox. The only limit is to resize it with an inferior size to its original.
For the rest of this lab, we resized our VM back to small and took a snapshot of the
VM.

OpenStack API to automate the operations described in objectives 4, 5, 6 and 7.
Implement a Web 2-tier application.

Openstack client installation

As mentioned on the lab file, we installed the OpenStack Client on the VM, and
configured it with the rc.sh file downloaded on OpenStack.

Web-2-tier application topology and specification

In this part, in order to use the various services we have to install NodeJs, Npm and
CURL.
The command we used to download the different services was wget
http://homepages…

So to make this work we have to create a new VM per web service on OpenStack.

16

The client will communicate with the CS, he will send every calculating operation,
and the CS will call the different web services when needed.

Before everything work as it should, we have to change the CS script:

Change every IP address from each VM containing the different web services
Change the port, from 80 to a port between 50 000 and 50 050, because it's the

only port accepted by the CSN. If we use other ports, the gateway (controlled by the
CSN) will block the communication.

The floating IP address from the CS VM has also to be changed.
In addition to that we have to add a rule in order for the port 50000 to be activated.

After all the changes, the files looks like the image below :

Deploy the Calculator application on OpenStack

After the configuration part, we created an independent VM to each service, as
shown below :

17

Each VM, for the different services has to be on the same network if we want our
system to work properly. After the creation of each VM, our network looks like the
image below :

On the main VM (VM_sans_volume), we have to do a sync-request if we want our VM
to be able to communicate with the exterior.

After every configuration step, we tested the system as shown below:

For the first test, we tried the sum service and we placed ourselves on the different
ports to ensure that every information sent is the correct one. As shown below, the
test was successful.

The last test we did was the multiplication because we wanted to test another
service available.

18

For the fourth part of this objective we had to implement the same logic but using
docker containers instead of 5 VM.
Because we ran out of time, we couldn't implement this system based on docker
containers, but theoretically the system would remain the same. Everything would
be managed by a single docker container, the “calculator” one. This container would
then ask the other containers to do the math operation depending on which
command was sent to it.

For the remaining objectives (10 and 11) we did not have the time to finish them.

Conclusion

With this lab we first started by understanding the various concepts and tools
around cloud computing. Then we had the opportunity to put it in use, and see in
which case the VM technology is more efficient than the docker containers.
This lab, and the multiple objectives, has allowed us to test different applications for
a virtual machine, see when the connection was available and what solution we had
to implement inorder to solve the connection issues. But has also allowed us to use
the docker containers, providing us with another solution, better suited for some
applications then the VMs.

19

