/*
* Copyright (C) 2018 dimercur
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
#include "img.h"
/**
* Tell if arena is empty (not found) or not
* @return true if no arena found, false otherwise
*/
bool Arena::IsEmpty() {
if ((this->arena.height == 0) || (this->arena.width == 0)) return true;
else return false;
}
/**
* Create new Img object based on image data
*
* @param imgMatrice Image data to be stored (raw data)
*/
Img::Img(ImageMat imgMatrice) {
this->img = imgMatrice.clone();
#ifdef __WITH_ARUCO__
this->dictionary=cv::aruco::getPredefinedDictionary(cv::aruco::PREDEFINED_DICTIONARY_NAME(3));
#endif // __WITH_ARUCO__
}
/**
* Convert object to a string representation
*
* @return String containing information on contained image (size and number of channel)
*/
string Img::ToString() {
return "Image size: " + to_string(this->img.cols) + "x" + to_string(this->img.rows) + " (dim=" + to_string(this->img.dims) + ")";
}
/**
* Create a copy of current object
*
* @return New Img object, copy of current
*/
Img* Img::Copy() {
return new Img(this->img);
}
/**
* Function for computing angle
* @param robots Position of robot
* @return Angle
*/
float Img::CalculAngle(Position robot) {
float a = robot.direction.x - robot.center.x;
float b = robot.direction.y - robot.center.y;
float angle = atan2(b, a);
return angle * 180.f / M_PI;
}
/**
* Function for computing angle
* @param pt1 ???
* @param pt2 ???
* @return Angle
*/
float Img::CalculAngle2(cv::Point2f pt1, cv::Point2f pt2) {
float a = pt1.x - pt2.x;
float b = pt1.y - pt2.y;
float angle = atan2(b, a);
return angle * 180.f / M_PI;
}
#ifdef __WITH_ARUCO__
/**
* Find center point of given aruco
* @param aruco Aruco coordinates
* @return Center point coordinate
*/
cv::Point2f Img::FindArucoCenter(std::vector aruco) {
return ((aruco[0] + aruco[2]) / 2);
}
/**
* Find direction of given aruco
* @param aruco Aruco coordinates
* @return Orientation of aruco
*/
cv::Point2f Img::FindArucoDirection(std::vector aruco) {
return ((aruco[0] + aruco[1]) / 2);
}
#endif // __WITH_ARUCO__
/**
* Used for computing distance
* @param p ???
* @param q ???
* @return Distance
*/
float Img::EuclideanDistance(cv::Point2f p, cv::Point2f q) {
cv::Point diff = p - q;
return cv::sqrt(diff.x * diff.x + diff.y * diff.y);
}
/**
* Compress current image to JPEG
* @return Image compressed as JPEG
*/
Jpg Img::ToJpg() {
Jpg imgJpg;
cv::imencode(".jpg", this->img, imgJpg);
return imgJpg;
}
/**
* Search available robots in an image
* @param arena Arena position for cropping image
* @return list of position, empty if no robot found
*/
std::list Img::SearchRobot(Arena arena) {
#ifdef __WITH_ARUCO__
ImageMat imgTraitment;
std::list positionList;
cv::Point2f areneCoor;
std::vector ids;
std::vector > corners;
if (arena.IsEmpty())
imgTraitment = this->img.clone();
else {
imgTraitment = CropArena(arena);
areneCoor.x = arena.arena.x;
areneCoor.y = arena.arena.y;
}
cv::aruco::detectMarkers(imgTraitment, dictionary, corners, ids);
if (ids.size() > 0) {
for (int i = 0; i < ids.size(); i++) {
Position newPos;
newPos.center = FindArucoCenter(corners[i]);
newPos.direction = FindArucoDirection(corners[i]);
newPos.robotId = ids[i];
if (!arena.IsEmpty()) {
newPos.direction += areneCoor;
newPos.center += areneCoor;
}
newPos.angle = CalculAngle2(newPos.center, newPos.direction);
positionList.push_back(newPos);
}
}
return positionList;
#else
std::list robotsFind;
std::vector > contours;
std::vector approx;
std::vector hierarchy;
ImageMat imgTraitment;
if (arena.IsEmpty()) {
imgTraitment = this->img.clone();
} else {
imgTraitment = this->img(arena.arena);
}
cvtColor(imgTraitment, imgTraitment, CV_RGB2GRAY);
threshold(imgTraitment, imgTraitment, 128, 255, CV_THRESH_BINARY);
findContours(imgTraitment, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, cv::Point(0, 0));
for (unsigned int i = 0; i < contours.size(); i++) {
ImageMat m(contours[i]);
cv::approxPolyDP(m, approx, cv::arcLength(ImageMat(contours[i]), true)*0.17, true);
if (approx.size() == 3 && fabs(cv::contourArea(contours[i])) > 200 && fabs(cv::contourArea(contours[i])) < 700) {
cv::Point a, b, c;
cv::Point center;
a = approx[0];
b = approx[1];
c = approx[2];
if (!arena.IsEmpty()) { // ajout de l'offset de l'arène
a.x += arena.arena.x;
a.y += arena.arena.y;
b.x += arena.arena.x;
b.y += arena.arena.y;
c.x += arena.arena.x;
c.y += arena.arena.y;
}
center.x = (a.x + b.x + c.x) / 3;
center.y = (a.y + b.y + c.y) / 3;
Position newPos;
newPos.center = center;
if (EuclideanDistance(center, b) > EuclideanDistance(center, a) && EuclideanDistance(center, b) > EuclideanDistance(center, c)) {
newPos.direction = b;
//line(img,center,b,Scalar(0,125,0),2,8,0);
} else if (EuclideanDistance(center, a) > EuclideanDistance(center, c)) {
newPos.direction = a;
//line(img,center,a,Scalar(0,125,0),2,8,0);
} else {
newPos.direction = c;
//line(img,center,c,Scalar(0,125,0),2,8,0);
}
newPos.angle = CalculAngle(newPos);
newPos.robotId = -1; // dumb identifier
robotsFind.push_back(newPos);
}
}
return robotsFind;
#endif // __WITH_ARUCO__
}
/**
* Search arena outline in current image
* @return Arena object with coordinate of outline, empty if no arena found
*/
Arena Img::SearchArena() {
std::vector > contours;
std::vector approx;
std::vector hierarchy;
ImageMat imageTrt;
cv::cvtColor(this->img, imageTrt, CV_RGB2GRAY); // conversion en niveau de gris
cv::threshold(imageTrt, imageTrt, 128, 255, CV_THRESH_BINARY); // Threshold les éléments les plus clair
cv::Canny(imageTrt, imageTrt, 100, 200, 3); // detection d'angle
findContours(imageTrt, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, cv::Point(0, 0));
for (unsigned int i = 0; i < contours.size(); i++) {
approxPolyDP(ImageMat(contours[i]), approx, cv::arcLength(ImageMat(contours[i]), true)*0.1, true);
if (approx.size() == 4 && fabs(cv::contourArea(contours[i])) > 100000) {
Arena rectangle;
rectangle.arena = cv::boundingRect(ImageMat(contours[i]));
return rectangle;
}
}
return Arena();
}
/**
* Draw an oriented arrow at robot position
* @param robot Position of robot
*/
void Img::DrawRobot(Position robot) {
cv::arrowedLine(this->img, (cv::Point2f)robot.center, (cv::Point2f)robot.direction, cv::Scalar(0, 0, 255), 3, 8, 0);
}
/**
* Draw an oriented arrow for each position provided
* @param robots List of robot positions
* @return Number of position drawn
*/
int Img::DrawAllRobots(std::list robots) {
for (Position robot : robots) {
cv::arrowedLine(this->img, (cv::Point2f)robot.center, (cv::Point2f)robot.direction, cv::Scalar(0, 0, 255), 3, 8, 0);
}
return robots.size();
}
/**
* Draw arena outline
* @param arenaToDraw Arena position
*/
void Img::DrawArena(Arena arenaToDraw) {
cv::rectangle(this->img, arenaToDraw.arena.tl(), arenaToDraw.arena.br(), cv::Scalar(0, 0, 125), 2, 8, 0);
}
/**
* Crop image around detected arena
* @param arena Coordinate of arena
* @return Reduced image, focused on arena
*/
ImageMat Img::CropArena(Arena arena) {
return this->img(arena.arena);
}