Compare commits

...

10 commits

45 changed files with 19912 additions and 67 deletions

View file

@ -0,0 +1,345 @@
/**
* Bibliotheque DriverJeuLaser (ancienne gassp72 adaptée 2021 - TR)
*
* GPIO - ADC - Sequenceur - System Timer - PWM - 72 MHz
* Modifs :
* enlèvement de tout ce qui est inutile dans le .h
* ajout de fonctions GPIO dans le .c pour utilisation en ASM ou en C :
* - GPIOA_Set(char Broche), GPIOB_Set(char Broche), GPIOC_Set(char Broche)
* - GPIOA_Clear(char Broche), GPIOB_Clear(char Broche), GPIOC_Clear(char Broche)
*
* ajout d'une fonction qui impose une valeur de PWM (TIM3_CCR3)
* PWM_Set_Value_On_TIM3_C3( int Val)
* permet en ASM ou en C de fixer la valeur de PWM
* Ajout de commentaires
*/
#ifndef DRIVERJEULASER_H__
#define DRIVERJEULASER_H__
#include "stm32f10x.h"
//**********************************************************************************************************
//--------------------- CONFIGURATION CLOCK DU STM32 --------------------------------------
//**********************************************************************************************************
/**
* @brief Configure l'ensemble des horloges du uC
* @note horloge systeme (config statique a 72 MHz pour le STM32F103)
* @param None
* @retval None
*/
void CLOCK_Configure(void);
//**********************************************************************************************************
//--------------------- LES TIMERS GENERAL PURPOSE TIM1 à TIM 4 ------------------------------
//**********************************************************************************************************
/**
* @brief Configure un Timer TIM1 à TIM4 avec une périodicité donnée
* @note L' horloge des 4 timers a une fréquence de 72MHz
* @param *Timer = TIM1 ou TIM2 ou TIM3 ou TIM4
* @param Durée_ticks : nombre de pas (tick) comptés à 72 MHz pour faire déborder le timer
* La période de débordement du Timer est donc T = Durée_ticks * Tck, avec Tck = 1/72 000 000
* @retval None
*/
void Timer_1234_Init_ff( TIM_TypeDef *Timer, u32 Duree_ticks );
/**
* Macros de base pour utiliser les timers
*/
// bloque le timer
#define Bloque_Timer(Timer) Timer->CR1=(Timer->CR1)&~(1<<0)
// Lance timer
#define Run_Timer(Timer) Timer->CR1=(Timer->CR1)|(1<<0)
/**
* @brief Associe une fonction d'interruption (callback) lors du débordement d'un timer
* @note
* @param *Timer = TIM1 ou TIM2 ou TIM3 ou TIM4
* @param Prio : niveau de priorité de l'interruption (0 -> priorité max, 15 -> priorité min)
* @param IT_function : le nom de la fonction Callback à appeler lors de l'interruption
* @retval None
*/
void Active_IT_Debordement_Timer( TIM_TypeDef *Timer, char Prio, void (*IT_function)(void) );
//*********************************************************************************************************
//--------------------- PWM TIM1 to TIM 4 ------------------------------
//*********************************************************************************************************
/**
* @brief Configure un timer en PWM
* @note
* @param *Timer = TIM1 ou TIM2 ou TIM3 ou TIM4
* @param voie : un des 4 canaux possibles 1 à 4.
* @param Periode_ticks : nombre de pas (tick) comptés à 72 MHz pour faire déborder le timer
* La période de débordement du Timer est donc T = Durée_ticks * Tck, avec Tck = 1/72 000 000
* @retval Retourne la période en tick (normalement la même que le param d'entrée sauf si PSC utilisé
*/
unsigned short int PWM_Init_ff( TIM_TypeDef *Timer, char Voie, u32 Periode_ticks );
/**
* @brief Fixe une valeur de PWM, Val, en tick horloge. La rapport cyclique effectif
* est donc : rcy = Thaut_ticks / Periode_ticks
* @note spécifique Jeu Laser, PWM liée exclusivement au TIM3, chan3
* @param Thaut_ticks : durée de l'état haut d'une impulsion en Ticks
* @retval None
*/
void PWM_Set_Value_TIM3_Ch3( unsigned short int Thaut_ticks);
//**********************************************************************************************************
//--------------------- LE SYSTICK TIMER, Part of Cortex M3 ------------------------------
//**********************************************************************************************************
/**
* @brief Configure le timer Systick avec une périodicité donnée
* @note Ce timer ne peut servir qu'à créer des temporisations ou générer des interruption
* ce n'est pas à proprement parler un périphérique, il fait partie du Cortex M3
* Ce timer est un 24 bits
* @param Periode_ticks : nombre de pas (tick) comptés à 72 MHz pour établir la périodicité
* La période de débordement du Timer est donc T = Durée_ticks * Tck, avec Tck = 1/72 000 000
* @retval None
*/
void Systick_Period_ff( unsigned int Periode_ticks );
/**
* @brief Associe une fonction d'interruption (callback) lors du débordement du Systick
* @note
* @param Prio : niveau de priorité de l'interruption (0 -> priorité max, 15 -> priorité min)
* @param IT_function : le nom de la fonction Callback à appeler lors de l'interruption
* @retval None
*/
void Systick_Prio_IT( char Prio, void (*Systick_function)(void) );
/**
* Macros de base pour utiliser le Systick
*/
#define SysTick_On ((SysTick->CTRL)=(SysTick->CTRL)|1<<0)
#define SysTick_Off ((SysTick->CTRL)=(SysTick->CTRL)& ~(1<<0))
#define SysTick_Enable_IT ((SysTick->CTRL)=(SysTick->CTRL)|1<<1)
#define SysTick_Disable_IT ((SysTick->CTRL)=(SysTick->CTRL)& ~(1<<1))
//**********************************************************************************************************
//--------------------- LE SYSTICK TIMER, Part of Cortex M3 ------------------------------
//**********************************************************************************************************
/**
* @brief Active l'ADC du STM32, configure la durée de prélèvement de l'échantillon (temps
* de fermeture du switch d'acquisition
* @note
* @param ADC : précise de quel ADC il s'agit, ADC1 ou ADC2
* @param Duree_Ech_ticks : dirée de fermeture du switch d'échantillonnage en Tick d'horloge CPU
* exemple pour 1µs on choisira 72.
* @retval Nombre de Tick réellement pris en compte
*/
unsigned int Init_TimingADC_ActiveADC_ff( ADC_TypeDef * ADC, u32 Duree_Ech_ticks );
/**
* @brief Sélectionne la voie à convertir
* @note Attention, la voie va de 0 à 15 et n'est pas directement lié au n°de GPIO
* @param ADC : précise de quel ADC il s'agit, ADC1 ou ADC2
* @param Voie_ADC : 1 à 15
* @retval None
*/
void Single_Channel_ADC( ADC_TypeDef * ADC, char Voie_ADC );
/**
* @brief Permet lier le déclenchement au débordement d'un timer, spécifie également
* la période de débordement du timer
* @note pas besoin de régler le timer avec une autre fonction dédiée timer
* @param ADC : précise de quel ADC il s'agit, ADC1 ou ADC2
* @param Source : indique le timer qui déclenche l'ADC choix dans les define ci-dessous
* @param Periode_ticks : nombre de pas (tick) comptés à 72 MHz pour faire déborder le timer
* La période de débordement du Timer est donc T = Durée_ticks * Tck, avec Tck = 1/72 000 000
* @retval None
*/
// param pour Source :
#define TIM1_CC1 0
#define TIM1_CC2 1
#define TIM1_CC3 2
#define TIM2_CC2 3
#define TIM4_CC4 5
void Init_Conversion_On_Trig_Timer_ff( ADC_TypeDef * ADC, char Source, u32 Periode_ticks );
//**********************************************************************************************************
//--------------------- ANALOG INPUT ADC & DMA ------------------------------
//**********************************************************************************************************
/**
* @brief Permer de lier l'ADC à un tableau en RAM pour une DMA
* @note
* @param Circ : circular. Si '0', en fin de DMA le ptr d'@ reste inchangé
* si '1' le ptr d'@ se recale à celle du début.
* @param Ptr_Table_DMA : contient l'@ de début de zone RAM à écrire
* @retval None
*/
void Init_ADC1_DMA1(char Circ, short int *Ptr_Table_DMA);
/**
* @brief Lance une DMA sur le nombre de points spécifie. Les resultats seront stockes
* dans la zone de RAM écrite est indiquée lors de l'appel de la fonction Init_ADC1_DMA1
* @note
* @param NbEchDMA est le nombre d'échantillons à stocker.
* @retval None
*/
void Start_DMA1( u16 NbEchDMA );
// arret DMA
#define Stop_DMA1 DMA1_Channel1->CCR =(DMA1_Channel1->CCR) &~0x1;
/**
* @brief Attend la fin d'un cycle de DMA. la duree depend de la periode d'acquisition
* et du nombre d'echantillons
* @note fonction d'attente (bloquante)
* @param None
* @retval None
*/
void Wait_On_End_Of_DMA1(void);
//**********************************************************************************************************
//--------------------- GPIO ------------------------------
//**********************************************************************************************************
/**
* @brief Initialisation d'un GPIO (A à C), pin x.
* peut être configuré :
* -> Input ou output
* -> architecture technologique (push-pull, open drain...)
* @note
* @param Port : GPIOA, GPIOB, GPIOC
* @param Broche : 0 à 15
* @param Sens : INPUT ou OUTPUT
* @param Techno : voir define ci dessous
* @retval 1 erreur, 0 si OK
*/
// Sens
#define INPUT 'i'
#define OUTPUT 'o'
// Techno pour pin en entrée (INPUT)
#define ANALOG 0
#define INPUT_FLOATING 1
#define INPUT_PULL_DOWN_UP 2
// Techno pour pin en sortie (OUTPUT)
#define OUTPUT_PPULL 0
#define OUTPUT_OPDRAIN 1
#define ALT_PPULL 2
#define ALT_OPDRAIN 3
// Exemple :
// Port_IO_Init(GPIOB, 8, OUTPUT, OUTPUT_PPULL);
// Place le bit 8 du port B en sortie Push-pull
char GPIO_Configure(GPIO_TypeDef * Port, int Broche, int Sens, int Techno);
/**
* @brief Mise à 1 d'une broche GPIO
* @note Une fonction par GPIO
* @param Broche : 0 à 15
* @retval None
*/
void GPIOA_Set(char Broche);
void GPIOB_Set(char Broche);
void GPIOC_Set(char Broche);
/**
* @brief Mise à 0 d'une broche GPIO
* @note Une fonction par GPIO
* @param Broche : 0 à 15
* @retval None
*/
void GPIOA_Clear(char Broche);
void GPIOB_Clear(char Broche);
void GPIOC_Clear(char Broche);
#endif

View file

@ -0,0 +1,56 @@
; Bibliotheque DriverJeuLaser (ancienne gassp72 adaptée 2021 - TR)
; Accès en aux fonctions suivantes :
; GPIO :
; GPIOA_Set(char Broche), GPIOB_Set(char Broche), GPIOC_Set(char Broche)
; GPIOA_Clear(char Broche), GPIOB_Clear(char Broche), GPIOC_Clear(char Broche)
; PWM :
;/**
; * @brief Fixe une valeur de PWM, Val, en tick horloge. La rapport cyclique effectif
; * est donc : rcy = Thaut_ticks / Periode_ticks
; * @note spécifique Jeu Laser, PWM liée exclusivement au TIM3, chan3
; * @param Thaut_ticks : durée de l'état haut d'une impulsion en Ticks
; * @retval None
; */
;void PWM_Set_Value_TIM3_Ch3( unsigned short int Thaut_ticks);
import PWM_Set_Value_TIM3_Ch3
;/**
; * @brief Mise à 1 d'une broche GPIO
; * @note Une fonction par GPIO
; * @param Broche : 0 à 15
; * @retval None
; */
;void GPIOA_Set(char Broche);
import GPIOA_Set
;void GPIOB_Set(char Broche);
import GPIOB_Set
;void GPIOC_Set(char Broche);
import GPIOC_Set
;/**
; * @brief Mise à 0 d'une broche GPIO
; * @note Une fonction par GPIO
; * @param Broche : 0 à 15
; * @retval None
; */
;void GPIOA_Clear(char Broche);
import GPIOA_Clear
;void GPIOB_Clear(char Broche);
import GPIOB_Clear
;void GPIOC_Clear(char Broche);
import GPIOC_Clear
end

View file

@ -0,0 +1,250 @@
PRESERVE8
THUMB
EXPORT TabCos
EXPORT TabSin
; ====================== zone de réservation de données, ======================================
;Section RAM (read only) :
area mesdata,data,readonly
;Section RAM (read write):
area maram,data,readwrite
; ===============================================================================================
;Section ROM code (read only) :
area moncode,code,readonly
; écrire le code ici
;int DFT_ModuleAuCarre( short int * Signal64ech, char k) {
; int reelle = 0;
; int imag = 0;
; for(int i=0; i<64; i++) {
; reelle += Signal64ech[i] * TabCos[k*i];
; imag += Signal64ech[i] * TabSin[k*i];
; }
; return (imag*imag + reelle*reelle);
;}
EXPORT DFT_ModuleAuCarre
DFT_ModuleAuCarre proc
push{lr}
push{r4-r11}
;r0 adresse Signa164ech
;r1 k
;r2 Signal64ech[i]
;r3 adresse TabCos puis valeur de TabCos[k*i]
;r4 itérateur
;r5 M (64)
;r6 k*i
;r7 reelle
;r8 imag
;r9 adresse TabSin puis valeur de TabSin[k*i]
;r10 Signal64ech[i] * TabCos[k*i]
;r11 Signal64ech[i] * TabSin[k*i]
;NB il faut utiliser smull et smlal
mov r8,#0
mov r7,#0 ; init de reelle à 0 -> r7
; for(int i=0; i<64; i++)
mov r4, #0 ; r4 = 0 (init de l'itérateur)
mov r5, #63
BoucleFor
cmp r4, r5
bgt FinBoucle
; reelle += Signal64ech[i] * TabCos[k*i]; (on le décompose en plusieurs étapes)
; Signal64ech[i]
ldrsh r2, [r0, r4, lsl #1]
; TabCos[k*i]
ldr r3, =TabCos
; TabSin[k*i]
ldr r9, =TabSin
; k*i->r6
mul r6, r1, r4
;(k*i)%64
and r6,#63 ;On fait un masque pour faire mod 64
; TabCos[r6]
ldrsh r3,[r3,r6,lsl #1]
; TabSin[r6]
ldrsh r9,[r9,r6,lsl #1]
; Signal64ech[i] * TabCos[k*i]
mul r10, r2, r3
; Signal64ech[i] * TabSin[k*i]
mul r11, r2, r9
; on ajoute notre réelle et imag au calcul
add r7, r10
add r8, r11
; incrémenter l'itérateur
add r4, #1
b BoucleFor
FinBoucle
; on met le résultat à disposition dans r0
;mov r1, r7
;mov r0, r8
smull r1, r0, r7, r7 ;NB :poids fort en 2eme pos
smlal r1, r0, r8, r8 ;
pop {r4-r11}
pop {pc}
endp
;Section ROM code (read only) :
AREA Trigo, DATA, READONLY
; codage fractionnaire 1.15
TabCos
DCW 32767 ; 0 0x7fff 0.99997
DCW 32610 ; 1 0x7f62 0.99518
DCW 32138 ; 2 0x7d8a 0.98077
DCW 31357 ; 3 0x7a7d 0.95694
DCW 30274 ; 4 0x7642 0.92389
DCW 28899 ; 5 0x70e3 0.88193
DCW 27246 ; 6 0x6a6e 0.83148
DCW 25330 ; 7 0x62f2 0.77301
DCW 23170 ; 8 0x5a82 0.70709
DCW 20788 ; 9 0x5134 0.63440
DCW 18205 ; 10 0x471d 0.55557
DCW 15447 ; 11 0x3c57 0.47141
DCW 12540 ; 12 0x30fc 0.38269
DCW 9512 ; 13 0x2528 0.29028
DCW 6393 ; 14 0x18f9 0.19510
DCW 3212 ; 15 0x0c8c 0.09802
DCW 0 ; 16 0x0000 0.00000
DCW -3212 ; 17 0xf374 -0.09802
DCW -6393 ; 18 0xe707 -0.19510
DCW -9512 ; 19 0xdad8 -0.29028
DCW -12540 ; 20 0xcf04 -0.38269
DCW -15447 ; 21 0xc3a9 -0.47141
DCW -18205 ; 22 0xb8e3 -0.55557
DCW -20788 ; 23 0xaecc -0.63440
DCW -23170 ; 24 0xa57e -0.70709
DCW -25330 ; 25 0x9d0e -0.77301
DCW -27246 ; 26 0x9592 -0.83148
DCW -28899 ; 27 0x8f1d -0.88193
DCW -30274 ; 28 0x89be -0.92389
DCW -31357 ; 29 0x8583 -0.95694
DCW -32138 ; 30 0x8276 -0.98077
DCW -32610 ; 31 0x809e -0.99518
DCW -32768 ; 32 0x8000 -1.00000
DCW -32610 ; 33 0x809e -0.99518
DCW -32138 ; 34 0x8276 -0.98077
DCW -31357 ; 35 0x8583 -0.95694
DCW -30274 ; 36 0x89be -0.92389
DCW -28899 ; 37 0x8f1d -0.88193
DCW -27246 ; 38 0x9592 -0.83148
DCW -25330 ; 39 0x9d0e -0.77301
DCW -23170 ; 40 0xa57e -0.70709
DCW -20788 ; 41 0xaecc -0.63440
DCW -18205 ; 42 0xb8e3 -0.55557
DCW -15447 ; 43 0xc3a9 -0.47141
DCW -12540 ; 44 0xcf04 -0.38269
DCW -9512 ; 45 0xdad8 -0.29028
DCW -6393 ; 46 0xe707 -0.19510
DCW -3212 ; 47 0xf374 -0.09802
DCW 0 ; 48 0x0000 0.00000
DCW 3212 ; 49 0x0c8c 0.09802
DCW 6393 ; 50 0x18f9 0.19510
DCW 9512 ; 51 0x2528 0.29028
DCW 12540 ; 52 0x30fc 0.38269
DCW 15447 ; 53 0x3c57 0.47141
DCW 18205 ; 54 0x471d 0.55557
DCW 20788 ; 55 0x5134 0.63440
DCW 23170 ; 56 0x5a82 0.70709
DCW 25330 ; 57 0x62f2 0.77301
DCW 27246 ; 58 0x6a6e 0.83148
DCW 28899 ; 59 0x70e3 0.88193
DCW 30274 ; 60 0x7642 0.92389
DCW 31357 ; 61 0x7a7d 0.95694
DCW 32138 ; 62 0x7d8a 0.98077
DCW 32610 ; 63 0x7f62 0.99518
TabSin
DCW 0 ; 0 0x0000 0.00000
DCW 3212 ; 1 0x0c8c 0.09802
DCW 6393 ; 2 0x18f9 0.19510
DCW 9512 ; 3 0x2528 0.29028
DCW 12540 ; 4 0x30fc 0.38269
DCW 15447 ; 5 0x3c57 0.47141
DCW 18205 ; 6 0x471d 0.55557
DCW 20788 ; 7 0x5134 0.63440
DCW 23170 ; 8 0x5a82 0.70709
DCW 25330 ; 9 0x62f2 0.77301
DCW 27246 ; 10 0x6a6e 0.83148
DCW 28899 ; 11 0x70e3 0.88193
DCW 30274 ; 12 0x7642 0.92389
DCW 31357 ; 13 0x7a7d 0.95694
DCW 32138 ; 14 0x7d8a 0.98077
DCW 32610 ; 15 0x7f62 0.99518
DCW 32767 ; 16 0x7fff 0.99997
DCW 32610 ; 17 0x7f62 0.99518
DCW 32138 ; 18 0x7d8a 0.98077
DCW 31357 ; 19 0x7a7d 0.95694
DCW 30274 ; 20 0x7642 0.92389
DCW 28899 ; 21 0x70e3 0.88193
DCW 27246 ; 22 0x6a6e 0.83148
DCW 25330 ; 23 0x62f2 0.77301
DCW 23170 ; 24 0x5a82 0.70709
DCW 20788 ; 25 0x5134 0.63440
DCW 18205 ; 26 0x471d 0.55557
DCW 15447 ; 27 0x3c57 0.47141
DCW 12540 ; 28 0x30fc 0.38269
DCW 9512 ; 29 0x2528 0.29028
DCW 6393 ; 30 0x18f9 0.19510
DCW 3212 ; 31 0x0c8c 0.09802
DCW 0 ; 32 0x0000 0.00000
DCW -3212 ; 33 0xf374 -0.09802
DCW -6393 ; 34 0xe707 -0.19510
DCW -9512 ; 35 0xdad8 -0.29028
DCW -12540 ; 36 0xcf04 -0.38269
DCW -15447 ; 37 0xc3a9 -0.47141
DCW -18205 ; 38 0xb8e3 -0.55557
DCW -20788 ; 39 0xaecc -0.63440
DCW -23170 ; 40 0xa57e -0.70709
DCW -25330 ; 41 0x9d0e -0.77301
DCW -27246 ; 42 0x9592 -0.83148
DCW -28899 ; 43 0x8f1d -0.88193
DCW -30274 ; 44 0x89be -0.92389
DCW -31357 ; 45 0x8583 -0.95694
DCW -32138 ; 46 0x8276 -0.98077
DCW -32610 ; 47 0x809e -0.99518
DCW -32768 ; 48 0x8000 -1.00000
DCW -32610 ; 49 0x809e -0.99518
DCW -32138 ; 50 0x8276 -0.98077
DCW -31357 ; 51 0x8583 -0.95694
DCW -30274 ; 52 0x89be -0.92389
DCW -28899 ; 53 0x8f1d -0.88193
DCW -27246 ; 54 0x9592 -0.83148
DCW -25330 ; 55 0x9d0e -0.77301
DCW -23170 ; 56 0xa57e -0.70709
DCW -20788 ; 57 0xaecc -0.63440
DCW -18205 ; 58 0xb8e3 -0.55557
DCW -15447 ; 59 0xc3a9 -0.47141
DCW -12540 ; 60 0xcf04 -0.38269
DCW -9512 ; 61 0xdad8 -0.29028
DCW -6393 ; 62 0xe707 -0.19510
DCW -3212 ; 63 0xf374 -0.09802
END

View file

@ -0,0 +1,68 @@
AREA Signal, DATA, READONLY
export LeSignal
LeSignal
DCW 0x0fff ; 0 4095 0.99976
DCW 0x0ff6 ; 1 4086 0.99756
DCW 0x0fd9 ; 2 4057 0.99048
DCW 0x0fa8 ; 3 4008 0.97852
DCW 0x0f64 ; 4 3940 0.96191
DCW 0x0f0e ; 5 3854 0.94092
DCW 0x0ea7 ; 6 3751 0.91577
DCW 0x0e2f ; 7 3631 0.88647
DCW 0x0da8 ; 8 3496 0.85352
DCW 0x0d13 ; 9 3347 0.81714
DCW 0x0c72 ; 10 3186 0.77783
DCW 0x0bc5 ; 11 3013 0.73560
DCW 0x0b10 ; 12 2832 0.69141
DCW 0x0a53 ; 13 2643 0.64526
DCW 0x0990 ; 14 2448 0.59766
DCW 0x08c9 ; 15 2249 0.54907
DCW 0x0800 ; 16 2048 0.50000
DCW 0x0737 ; 17 1847 0.45093
DCW 0x0670 ; 18 1648 0.40234
DCW 0x05ad ; 19 1453 0.35474
DCW 0x04f0 ; 20 1264 0.30859
DCW 0x043b ; 21 1083 0.26440
DCW 0x038e ; 22 910 0.22217
DCW 0x02ed ; 23 749 0.18286
DCW 0x0258 ; 24 600 0.14648
DCW 0x01d1 ; 25 465 0.11353
DCW 0x0159 ; 26 345 0.08423
DCW 0x00f2 ; 27 242 0.05908
DCW 0x009c ; 28 156 0.03809
DCW 0x0058 ; 29 88 0.02148
DCW 0x0027 ; 30 39 0.00952
DCW 0x000a ; 31 10 0.00244
DCW 0x0000 ; 32 0 0.00000
DCW 0x000a ; 33 10 0.00244
DCW 0x0027 ; 34 39 0.00952
DCW 0x0058 ; 35 88 0.02148
DCW 0x009c ; 36 156 0.03809
DCW 0x00f2 ; 37 242 0.05908
DCW 0x0159 ; 38 345 0.08423
DCW 0x01d1 ; 39 465 0.11353
DCW 0x0258 ; 40 600 0.14648
DCW 0x02ed ; 41 749 0.18286
DCW 0x038e ; 42 910 0.22217
DCW 0x043b ; 43 1083 0.26440
DCW 0x04f0 ; 44 1264 0.30859
DCW 0x05ad ; 45 1453 0.35474
DCW 0x0670 ; 46 1648 0.40234
DCW 0x0737 ; 47 1847 0.45093
DCW 0x0800 ; 48 2048 0.50000
DCW 0x08c9 ; 49 2249 0.54907
DCW 0x0990 ; 50 2448 0.59766
DCW 0x0a53 ; 51 2643 0.64526
DCW 0x0b10 ; 52 2832 0.69141
DCW 0x0bc5 ; 53 3013 0.73560
DCW 0x0c72 ; 54 3186 0.77783
DCW 0x0d13 ; 55 3347 0.81714
DCW 0x0da8 ; 56 3496 0.85352
DCW 0x0e2f ; 57 3631 0.88647
DCW 0x0ea7 ; 58 3751 0.91577
DCW 0x0f0e ; 59 3854 0.94092
DCW 0x0f64 ; 60 3940 0.96191
DCW 0x0fa8 ; 61 4008 0.97852
DCW 0x0fd9 ; 62 4057 0.99048
DCW 0x0ff6 ; 63 4086 0.99756
END

View file

@ -0,0 +1,38 @@
clc
clear
N = input('Nombre d''échantilllons pour ce signal : ');
Frel = input('Fréquence normalisée (nombre de périodes dans la durée totale) : ');
Ph0 = input('Phase a l''origine (en degrés) : ');
Ph0 = Ph0 * pi / 180.0; % a present en radian
Ampl = 2048;
Offset = 2048;
%% Création du fichier .asm
fileID = fopen(['Signal.asm'], 'w');
fprintf(fileID,'\tAREA Signal, DATA, READONLY\n');
fprintf(fileID,'\texport LeSignal\n');
fprintf(fileID,'LeSignal\n');
for i = 1: N
% fonction a modifier en fonction des besoins
Sig(i) = Offset + Ampl * cos( 2*pi*Frel*(i-1)/N + Ph0 );
% arrondi
iSig = int16(Sig(i));
% bornage du signal similaire a la sortie brute de l'ADC 12 bits
if ( iSig < 0 )
iSig = 0;
end
if ( iSig > 4095 )
iSig = 4095;
end
fprintf(fileID,'\tDCW\t0x%04x\t; %2d %4d %7.5f\n',iSig, i-1, iSig, double(iSig) / 4096.0 );
end
fprintf(fileID,'\tEND\n');
fclose(fileID);
plot(Sig);

View file

@ -0,0 +1,58 @@
#include "DriverJeuLaser.h"
extern short int LeSignal[];
extern int DFT_ModuleAuCarre( short int * Signal64ech, char k);
int moduleSignal[64] ;
short int dma_buf[64] ;
void callback() {
Start_DMA1(64);
Wait_On_End_Of_DMA1();
Stop_DMA1;
for (int j=0; j<64 ; j++) {
moduleSignal[j] = DFT_ModuleAuCarre(&(dma_buf[0]), j);
}
}
int main(void)
{
// ===========================================================================
// ============= INIT PERIPH (faites qu'une seule fois) =====================
// ===========================================================================
// Après exécution : le coeur CPU est clocké à 72MHz ainsi que tous les timers
CLOCK_Configure();
Systick_Period_ff(5000*72);
Systick_Prio_IT(2, callback) ;
SysTick_On ;
SysTick_Enable_IT ;
Init_TimingADC_ActiveADC_ff( ADC1, 72 ) ;
Single_Channel_ADC( ADC1, 2 );
Init_Conversion_On_Trig_Timer_ff( ADC1, TIM2_CC2, 225 );
Init_ADC1_DMA1( 0, dma_buf );
//============================================================================
while (1)
{
}
}

View file

@ -0,0 +1,335 @@
;******************** (C) COPYRIGHT 2011 STMicroelectronics ********************
;* File Name : startup_stm32f10x_md.s
;* Author : MCD Application Team
;* Version : V3.5.0
;* Date : 11-March-2011
;* Description : STM32F10x Medium Density Devices vector table for MDK-ARM
;* toolchain.
;* This module performs:
;* - Set the initial SP
;* - Set the initial PC == Reset_Handler
;* - Set the vector table entries with the exceptions ISR address
;* - Configure the clock system
;* - Branches to __main in the C library (which eventually
;* calls main()).
;* After Reset the CortexM3 processor is in Thread mode,
;* priority is Privileged, and the Stack is set to Main.
;* <<< Use Configuration Wizard in Context Menu >>>
;*******************************************************************************
; THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
; WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME.
; AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY DIRECT,
; INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM THE
; CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE CODING
; INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
;*******************************************************************************
; Amount of memory (in bytes) allocated for Stack
; Tailor this value to your application needs
; <h> Stack Configuration
; <o> Stack Size (in Bytes) <0x0-0xFFFFFFFF:8>
; </h>
Stack_Size EQU 0x00000400
AREA STACK, NOINIT, READWRITE, ALIGN=3
Stack_Mem SPACE Stack_Size
__initial_sp
; <h> Heap Configuration
; <o> Heap Size (in Bytes) <0x0-0xFFFFFFFF:8>
; </h>
Heap_Size EQU 0x00000200
AREA HEAP, NOINIT, READWRITE, ALIGN=3
__heap_base
Heap_Mem SPACE Heap_Size
__heap_limit
PRESERVE8
THUMB
; Vector Table Mapped to Address 0 at Reset
AREA RESET, DATA, READONLY
EXPORT __Vectors
EXPORT __Vectors_End
EXPORT __Vectors_Size
__Vectors DCD __initial_sp ; Top of Stack
DCD Reset_Handler ; Reset Handler
DCD NMI_Handler ; NMI Handler
DCD HardFault_Handler ; Hard Fault Handler
DCD MemManage_Handler ; MPU Fault Handler
DCD BusFault_Handler ; Bus Fault Handler
DCD UsageFault_Handler ; Usage Fault Handler
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD SVC_Handler ; SVCall Handler
DCD DebugMon_Handler ; Debug Monitor Handler
DCD 0 ; Reserved
DCD PendSV_Handler ; PendSV Handler
DCD SysTick_Handler ; SysTick Handler
; External Interrupts
DCD WWDG_IRQHandler ; Window Watchdog
DCD PVD_IRQHandler ; PVD through EXTI Line detect
DCD TAMPER_IRQHandler ; Tamper
DCD RTC_IRQHandler ; RTC
DCD FLASH_IRQHandler ; Flash
DCD RCC_IRQHandler ; RCC
DCD EXTI0_IRQHandler ; EXTI Line 0
DCD EXTI1_IRQHandler ; EXTI Line 1
DCD EXTI2_IRQHandler ; EXTI Line 2
DCD EXTI3_IRQHandler ; EXTI Line 3
DCD EXTI4_IRQHandler ; EXTI Line 4
DCD DMA1_Channel1_IRQHandler ; DMA1 Channel 1
DCD DMA1_Channel2_IRQHandler ; DMA1 Channel 2
DCD DMA1_Channel3_IRQHandler ; DMA1 Channel 3
DCD DMA1_Channel4_IRQHandler ; DMA1 Channel 4
DCD DMA1_Channel5_IRQHandler ; DMA1 Channel 5
DCD DMA1_Channel6_IRQHandler ; DMA1 Channel 6
DCD DMA1_Channel7_IRQHandler ; DMA1 Channel 7
DCD ADC1_2_IRQHandler ; ADC1_2
DCD USB_HP_CAN1_TX_IRQHandler ; USB High Priority or CAN1 TX
DCD USB_LP_CAN1_RX0_IRQHandler ; USB Low Priority or CAN1 RX0
DCD CAN1_RX1_IRQHandler ; CAN1 RX1
DCD CAN1_SCE_IRQHandler ; CAN1 SCE
DCD EXTI9_5_IRQHandler ; EXTI Line 9..5
DCD TIM1_BRK_IRQHandler ; TIM1 Break
DCD TIM1_UP_IRQHandler ; TIM1 Update
DCD TIM1_TRG_COM_IRQHandler ; TIM1 Trigger and Commutation
DCD TIM1_CC_IRQHandler ; TIM1 Capture Compare
DCD TIM2_IRQHandler ; TIM2
DCD TIM3_IRQHandler ; TIM3
DCD TIM4_IRQHandler ; TIM4
DCD I2C1_EV_IRQHandler ; I2C1 Event
DCD I2C1_ER_IRQHandler ; I2C1 Error
DCD I2C2_EV_IRQHandler ; I2C2 Event
DCD I2C2_ER_IRQHandler ; I2C2 Error
DCD SPI1_IRQHandler ; SPI1
DCD SPI2_IRQHandler ; SPI2
DCD USART1_IRQHandler ; USART1
DCD USART2_IRQHandler ; USART2
DCD USART3_IRQHandler ; USART3
DCD EXTI15_10_IRQHandler ; EXTI Line 15..10
DCD RTCAlarm_IRQHandler ; RTC Alarm through EXTI Line
DCD USBWakeUp_IRQHandler ; USB Wakeup from suspend
__Vectors_End
__Vectors_Size EQU __Vectors_End - __Vectors
AREA |.text|, CODE, READONLY
; Reset handler
Reset_Handler PROC
EXPORT Reset_Handler [WEAK]
IMPORT __main
LDR R0, =SystemInit
BLX R0
;
; Enable UsageFault, MemFault and Busfault interrupts
;
_SHCSR EQU 0xE000ED24 ; SHCSR is located at address 0xE000ED24
LDR.W R0, =_SHCSR
LDR R1, [R0] ; Read CPACR
ORR R1, R1, #(0x7 << 16) ; Set bits 16,17,18 to enable usagefault, busfault, memfault interrupts
STR R1, [R0] ; Write back the modified value to the CPACR
DSB ; Wait for store to complete
;
; Set priority grouping (PRIGROUP) in AIRCR to 3 (16 levels for group priority and 0 for subpriority)
;
_AIRCR EQU 0xE000ED0C
_AIRCR_VAL EQU 0x05FA0300
LDR.W R0, =_AIRCR
LDR.W R1, =_AIRCR_VAL
STR R1,[R0]
;
; Finaly, jump to main function (void main (void))
;
LDR R0, =__main
BX R0
ENDP
SystemInit PROC
EXPORT SystemInit [WEAK]
BX LR
ENDP
; Dummy Exception Handlers (infinite loops which can be modified)
NMI_Handler PROC
EXPORT NMI_Handler [WEAK]
B .
ENDP
HardFault_Handler\
PROC
EXPORT HardFault_Handler [WEAK]
B .
ENDP
MemManage_Handler\
PROC
EXPORT MemManage_Handler [WEAK]
B .
ENDP
BusFault_Handler\
PROC
EXPORT BusFault_Handler [WEAK]
B .
ENDP
UsageFault_Handler\
PROC
EXPORT UsageFault_Handler [WEAK]
B .
ENDP
SVC_Handler PROC
EXPORT SVC_Handler [WEAK]
B .
ENDP
DebugMon_Handler\
PROC
EXPORT DebugMon_Handler [WEAK]
B .
ENDP
PendSV_Handler PROC
EXPORT PendSV_Handler [WEAK]
B .
ENDP
SysTick_Handler PROC
EXPORT SysTick_Handler [WEAK]
B .
ENDP
Default_Handler PROC
EXPORT WWDG_IRQHandler [WEAK]
EXPORT PVD_IRQHandler [WEAK]
EXPORT TAMPER_IRQHandler [WEAK]
EXPORT RTC_IRQHandler [WEAK]
EXPORT FLASH_IRQHandler [WEAK]
EXPORT RCC_IRQHandler [WEAK]
EXPORT EXTI0_IRQHandler [WEAK]
EXPORT EXTI1_IRQHandler [WEAK]
EXPORT EXTI2_IRQHandler [WEAK]
EXPORT EXTI3_IRQHandler [WEAK]
EXPORT EXTI4_IRQHandler [WEAK]
EXPORT DMA1_Channel1_IRQHandler [WEAK]
EXPORT DMA1_Channel2_IRQHandler [WEAK]
EXPORT DMA1_Channel3_IRQHandler [WEAK]
EXPORT DMA1_Channel4_IRQHandler [WEAK]
EXPORT DMA1_Channel5_IRQHandler [WEAK]
EXPORT DMA1_Channel6_IRQHandler [WEAK]
EXPORT DMA1_Channel7_IRQHandler [WEAK]
EXPORT ADC1_2_IRQHandler [WEAK]
EXPORT USB_HP_CAN1_TX_IRQHandler [WEAK]
EXPORT USB_LP_CAN1_RX0_IRQHandler [WEAK]
EXPORT CAN1_RX1_IRQHandler [WEAK]
EXPORT CAN1_SCE_IRQHandler [WEAK]
EXPORT EXTI9_5_IRQHandler [WEAK]
EXPORT TIM1_BRK_IRQHandler [WEAK]
EXPORT TIM1_UP_IRQHandler [WEAK]
EXPORT TIM1_TRG_COM_IRQHandler [WEAK]
EXPORT TIM1_CC_IRQHandler [WEAK]
EXPORT TIM2_IRQHandler [WEAK]
EXPORT TIM3_IRQHandler [WEAK]
EXPORT TIM4_IRQHandler [WEAK]
EXPORT I2C1_EV_IRQHandler [WEAK]
EXPORT I2C1_ER_IRQHandler [WEAK]
EXPORT I2C2_EV_IRQHandler [WEAK]
EXPORT I2C2_ER_IRQHandler [WEAK]
EXPORT SPI1_IRQHandler [WEAK]
EXPORT SPI2_IRQHandler [WEAK]
EXPORT USART1_IRQHandler [WEAK]
EXPORT USART2_IRQHandler [WEAK]
EXPORT USART3_IRQHandler [WEAK]
EXPORT EXTI15_10_IRQHandler [WEAK]
EXPORT RTCAlarm_IRQHandler [WEAK]
EXPORT USBWakeUp_IRQHandler [WEAK]
WWDG_IRQHandler
PVD_IRQHandler
TAMPER_IRQHandler
RTC_IRQHandler
FLASH_IRQHandler
RCC_IRQHandler
EXTI0_IRQHandler
EXTI1_IRQHandler
EXTI2_IRQHandler
EXTI3_IRQHandler
EXTI4_IRQHandler
DMA1_Channel1_IRQHandler
DMA1_Channel2_IRQHandler
DMA1_Channel3_IRQHandler
DMA1_Channel4_IRQHandler
DMA1_Channel5_IRQHandler
DMA1_Channel6_IRQHandler
DMA1_Channel7_IRQHandler
ADC1_2_IRQHandler
USB_HP_CAN1_TX_IRQHandler
USB_LP_CAN1_RX0_IRQHandler
CAN1_RX1_IRQHandler
CAN1_SCE_IRQHandler
EXTI9_5_IRQHandler
TIM1_BRK_IRQHandler
TIM1_UP_IRQHandler
TIM1_TRG_COM_IRQHandler
TIM1_CC_IRQHandler
TIM2_IRQHandler
TIM3_IRQHandler
TIM4_IRQHandler
I2C1_EV_IRQHandler
I2C1_ER_IRQHandler
I2C2_EV_IRQHandler
I2C2_ER_IRQHandler
SPI1_IRQHandler
SPI2_IRQHandler
USART1_IRQHandler
USART2_IRQHandler
USART3_IRQHandler
EXTI15_10_IRQHandler
RTCAlarm_IRQHandler
USBWakeUp_IRQHandler
B .
ENDP
ALIGN
;*******************************************************************************
; User Stack and Heap initialization
;*******************************************************************************
IF :DEF:__MICROLIB
EXPORT __initial_sp
EXPORT __heap_base
EXPORT __heap_limit
ELSE
IMPORT __use_two_region_memory
EXPORT __user_initial_stackheap
__user_initial_stackheap
LDR R0, = Heap_Mem
LDR R1, =(Stack_Mem + Stack_Size)
LDR R2, = (Heap_Mem + Heap_Size)
LDR R3, = Stack_Mem
BX LR
ALIGN
ENDIF
END
;******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE*****

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,345 @@
/**
* Bibliotheque DriverJeuLaser (ancienne gassp72 adaptée 2021 - TR)
*
* GPIO - ADC - Sequenceur - System Timer - PWM - 72 MHz
* Modifs :
* enlèvement de tout ce qui est inutile dans le .h
* ajout de fonctions GPIO dans le .c pour utilisation en ASM ou en C :
* - GPIOA_Set(char Broche), GPIOB_Set(char Broche), GPIOC_Set(char Broche)
* - GPIOA_Clear(char Broche), GPIOB_Clear(char Broche), GPIOC_Clear(char Broche)
*
* ajout d'une fonction qui impose une valeur de PWM (TIM3_CCR3)
* PWM_Set_Value_On_TIM3_C3( int Val)
* permet en ASM ou en C de fixer la valeur de PWM
* Ajout de commentaires
*/
#ifndef DRIVERJEULASER_H__
#define DRIVERJEULASER_H__
#include "stm32f10x.h"
//**********************************************************************************************************
//--------------------- CONFIGURATION CLOCK DU STM32 --------------------------------------
//**********************************************************************************************************
/**
* @brief Configure l'ensemble des horloges du uC
* @note horloge systeme (config statique a 72 MHz pour le STM32F103)
* @param None
* @retval None
*/
void CLOCK_Configure(void);
//**********************************************************************************************************
//--------------------- LES TIMERS GENERAL PURPOSE TIM1 à TIM 4 ------------------------------
//**********************************************************************************************************
/**
* @brief Configure un Timer TIM1 à TIM4 avec une périodicité donnée
* @note L' horloge des 4 timers a une fréquence de 72MHz
* @param *Timer = TIM1 ou TIM2 ou TIM3 ou TIM4
* @param Durée_ticks : nombre de pas (tick) comptés à 72 MHz pour faire déborder le timer
* La période de débordement du Timer est donc T = Durée_ticks * Tck, avec Tck = 1/72 000 000
* @retval None
*/
void Timer_1234_Init_ff( TIM_TypeDef *Timer, u32 Duree_ticks );
/**
* Macros de base pour utiliser les timers
*/
// bloque le timer
#define Bloque_Timer(Timer) Timer->CR1=(Timer->CR1)&~(1<<0)
// Lance timer
#define Run_Timer(Timer) Timer->CR1=(Timer->CR1)|(1<<0)
/**
* @brief Associe une fonction d'interruption (callback) lors du débordement d'un timer
* @note
* @param *Timer = TIM1 ou TIM2 ou TIM3 ou TIM4
* @param Prio : niveau de priorité de l'interruption (0 -> priorité max, 15 -> priorité min)
* @param IT_function : le nom de la fonction Callback à appeler lors de l'interruption
* @retval None
*/
void Active_IT_Debordement_Timer( TIM_TypeDef *Timer, char Prio, void (*IT_function)(void) );
//*********************************************************************************************************
//--------------------- PWM TIM1 to TIM 4 ------------------------------
//*********************************************************************************************************
/**
* @brief Configure un timer en PWM
* @note
* @param *Timer = TIM1 ou TIM2 ou TIM3 ou TIM4
* @param voie : un des 4 canaux possibles 1 à 4.
* @param Periode_ticks : nombre de pas (tick) comptés à 72 MHz pour faire déborder le timer
* La période de débordement du Timer est donc T = Durée_ticks * Tck, avec Tck = 1/72 000 000
* @retval Retourne la période en tick (normalement la même que le param d'entrée sauf si PSC utilisé
*/
unsigned short int PWM_Init_ff( TIM_TypeDef *Timer, char Voie, u32 Periode_ticks );
/**
* @brief Fixe une valeur de PWM, Val, en tick horloge. La rapport cyclique effectif
* est donc : rcy = Thaut_ticks / Periode_ticks
* @note spécifique Jeu Laser, PWM liée exclusivement au TIM3, chan3
* @param Thaut_ticks : durée de l'état haut d'une impulsion en Ticks
* @retval None
*/
void PWM_Set_Value_TIM3_Ch3( unsigned short int Thaut_ticks);
//**********************************************************************************************************
//--------------------- LE SYSTICK TIMER, Part of Cortex M3 ------------------------------
//**********************************************************************************************************
/**
* @brief Configure le timer Systick avec une périodicité donnée
* @note Ce timer ne peut servir qu'à créer des temporisations ou générer des interruption
* ce n'est pas à proprement parler un périphérique, il fait partie du Cortex M3
* Ce timer est un 24 bits
* @param Periode_ticks : nombre de pas (tick) comptés à 72 MHz pour établir la périodicité
* La période de débordement du Timer est donc T = Durée_ticks * Tck, avec Tck = 1/72 000 000
* @retval None
*/
void Systick_Period_ff( unsigned int Periode_ticks );
/**
* @brief Associe une fonction d'interruption (callback) lors du débordement du Systick
* @note
* @param Prio : niveau de priorité de l'interruption (0 -> priorité max, 15 -> priorité min)
* @param IT_function : le nom de la fonction Callback à appeler lors de l'interruption
* @retval None
*/
void Systick_Prio_IT( char Prio, void (*Systick_function)(void) );
/**
* Macros de base pour utiliser le Systick
*/
#define SysTick_On ((SysTick->CTRL)=(SysTick->CTRL)|1<<0)
#define SysTick_Off ((SysTick->CTRL)=(SysTick->CTRL)& ~(1<<0))
#define SysTick_Enable_IT ((SysTick->CTRL)=(SysTick->CTRL)|1<<1)
#define SysTick_Disable_IT ((SysTick->CTRL)=(SysTick->CTRL)& ~(1<<1))
//**********************************************************************************************************
//--------------------- LE SYSTICK TIMER, Part of Cortex M3 ------------------------------
//**********************************************************************************************************
/**
* @brief Active l'ADC du STM32, configure la durée de prélèvement de l'échantillon (temps
* de fermeture du switch d'acquisition
* @note
* @param ADC : précise de quel ADC il s'agit, ADC1 ou ADC2
* @param Duree_Ech_ticks : dirée de fermeture du switch d'échantillonnage en Tick d'horloge CPU
* exemple pour 1µs on choisira 72.
* @retval Nombre de Tick réellement pris en compte
*/
unsigned int Init_TimingADC_ActiveADC_ff( ADC_TypeDef * ADC, u32 Duree_Ech_ticks );
/**
* @brief Sélectionne la voie à convertir
* @note Attention, la voie va de 0 à 15 et n'est pas directement lié au n°de GPIO
* @param ADC : précise de quel ADC il s'agit, ADC1 ou ADC2
* @param Voie_ADC : 1 à 15
* @retval None
*/
void Single_Channel_ADC( ADC_TypeDef * ADC, char Voie_ADC );
/**
* @brief Permet lier le déclenchement au débordement d'un timer, spécifie également
* la période de débordement du timer
* @note pas besoin de régler le timer avec une autre fonction dédiée timer
* @param ADC : précise de quel ADC il s'agit, ADC1 ou ADC2
* @param Source : indique le timer qui déclenche l'ADC choix dans les define ci-dessous
* @param Periode_ticks : nombre de pas (tick) comptés à 72 MHz pour faire déborder le timer
* La période de débordement du Timer est donc T = Durée_ticks * Tck, avec Tck = 1/72 000 000
* @retval None
*/
// param pour Source :
#define TIM1_CC1 0
#define TIM1_CC2 1
#define TIM1_CC3 2
#define TIM2_CC2 3
#define TIM4_CC4 5
void Init_Conversion_On_Trig_Timer_ff( ADC_TypeDef * ADC, char Source, u32 Periode_ticks );
//**********************************************************************************************************
//--------------------- ANALOG INPUT ADC & DMA ------------------------------
//**********************************************************************************************************
/**
* @brief Permer de lier l'ADC à un tableau en RAM pour une DMA
* @note
* @param Circ : circular. Si '0', en fin de DMA le ptr d'@ reste inchangé
* si '1' le ptr d'@ se recale à celle du début.
* @param Ptr_Table_DMA : contient l'@ de début de zone RAM à écrire
* @retval None
*/
void Init_ADC1_DMA1(char Circ, short int *Ptr_Table_DMA);
/**
* @brief Lance une DMA sur le nombre de points spécifie. Les resultats seront stockes
* dans la zone de RAM écrite est indiquée lors de l'appel de la fonction Init_ADC1_DMA1
* @note
* @param NbEchDMA est le nombre d'échantillons à stocker.
* @retval None
*/
void Start_DMA1( u16 NbEchDMA );
// arret DMA
#define Stop_DMA1 DMA1_Channel1->CCR =(DMA1_Channel1->CCR) &~0x1;
/**
* @brief Attend la fin d'un cycle de DMA. la duree depend de la periode d'acquisition
* et du nombre d'echantillons
* @note fonction d'attente (bloquante)
* @param None
* @retval None
*/
void Wait_On_End_Of_DMA1(void);
//**********************************************************************************************************
//--------------------- GPIO ------------------------------
//**********************************************************************************************************
/**
* @brief Initialisation d'un GPIO (A à C), pin x.
* peut être configuré :
* -> Input ou output
* -> architecture technologique (push-pull, open drain...)
* @note
* @param Port : GPIOA, GPIOB, GPIOC
* @param Broche : 0 à 15
* @param Sens : INPUT ou OUTPUT
* @param Techno : voir define ci dessous
* @retval 1 erreur, 0 si OK
*/
// Sens
#define INPUT 'i'
#define OUTPUT 'o'
// Techno pour pin en entrée (INPUT)
#define ANALOG 0
#define INPUT_FLOATING 1
#define INPUT_PULL_DOWN_UP 2
// Techno pour pin en sortie (OUTPUT)
#define OUTPUT_PPULL 0
#define OUTPUT_OPDRAIN 1
#define ALT_PPULL 2
#define ALT_OPDRAIN 3
// Exemple :
// Port_IO_Init(GPIOB, 8, OUTPUT, OUTPUT_PPULL);
// Place le bit 8 du port B en sortie Push-pull
char GPIO_Configure(GPIO_TypeDef * Port, int Broche, int Sens, int Techno);
/**
* @brief Mise à 1 d'une broche GPIO
* @note Une fonction par GPIO
* @param Broche : 0 à 15
* @retval None
*/
void GPIOA_Set(char Broche);
void GPIOB_Set(char Broche);
void GPIOC_Set(char Broche);
/**
* @brief Mise à 0 d'une broche GPIO
* @note Une fonction par GPIO
* @param Broche : 0 à 15
* @retval None
*/
void GPIOA_Clear(char Broche);
void GPIOB_Clear(char Broche);
void GPIOC_Clear(char Broche);
#endif

View file

@ -0,0 +1,56 @@
; Bibliotheque DriverJeuLaser (ancienne gassp72 adaptée 2021 - TR)
; Accès en aux fonctions suivantes :
; GPIO :
; GPIOA_Set(char Broche), GPIOB_Set(char Broche), GPIOC_Set(char Broche)
; GPIOA_Clear(char Broche), GPIOB_Clear(char Broche), GPIOC_Clear(char Broche)
; PWM :
;/**
; * @brief Fixe une valeur de PWM, Val, en tick horloge. La rapport cyclique effectif
; * est donc : rcy = Thaut_ticks / Periode_ticks
; * @note spécifique Jeu Laser, PWM liée exclusivement au TIM3, chan3
; * @param Thaut_ticks : durée de l'état haut d'une impulsion en Ticks
; * @retval None
; */
;void PWM_Set_Value_TIM3_Ch3( unsigned short int Thaut_ticks);
import PWM_Set_Value_TIM3_Ch3
;/**
; * @brief Mise à 1 d'une broche GPIO
; * @note Une fonction par GPIO
; * @param Broche : 0 à 15
; * @retval None
; */
;void GPIOA_Set(char Broche);
import GPIOA_Set
;void GPIOB_Set(char Broche);
import GPIOB_Set
;void GPIOC_Set(char Broche);
import GPIOC_Set
;/**
; * @brief Mise à 0 d'une broche GPIO
; * @note Une fonction par GPIO
; * @param Broche : 0 à 15
; * @retval None
; */
;void GPIOA_Clear(char Broche);
import GPIOA_Clear
;void GPIOB_Clear(char Broche);
import GPIOB_Clear
;void GPIOC_Clear(char Broche);
import GPIOC_Clear
end

249
PjtKEIL_StepDFT/Src/DFT.s Normal file
View file

@ -0,0 +1,249 @@
PRESERVE8
THUMB
EXPORT TabCos
EXPORT TabSin
; ====================== zone de réservation de données, ======================================
;Section RAM (read only) :
area mesdata,data,readonly
;Section RAM (read write):
area maram,data,readwrite
; ===============================================================================================
;Section ROM code (read only) :
area moncode,code,readonly
; écrire le code ici
;int DFT_ModuleAuCarre( short int * Signal64ech, char k) {
; int reelle = 0;
; int imag = 0;
; for(int i=0; i<64; i++) {
; reelle += Signal64ech[i] * TabCos[k*i];
; imag += Signal64ech[i] * TabSin[k*i];
; }
; return (imag*imag + reelle*reelle);
;}
EXPORT DFT_ModuleAuCarre
DFT_ModuleAuCarre proc
push{lr}
push{r4-r11}
;r0 adresse Signa164ech
;r1 k
;r2 Signal64ech[i]
;r3 adresse TabCos puis valeur de TabCos[k*i]
;r4 itérateur
;r5 M (64)
;r6 k*i
;r7 reelle
;r8 imag
;r9 adresse TabSin puis valeur de TabSin[k*i]
;r10 Signal64ech[i] * TabCos[k*i]
;r11 Signal64ech[i] * TabSin[k*i]
;NB il faut utiliser smull et smlal
mov r8,#0
mov r7,#0 ; init de reelle à 0 -> r7
; for(int i=0; i<64; i++)
mov r4, #0 ; r4 = 0 (init de l'itérateur)
mov r5, #63
BoucleFor
cmp r4, r5
bgt FinBoucle
; reelle += Signal64ech[i] * TabCos[k*i]; (on le décompose en plusieurs étapes)
; Signal64ech[i]
ldrsh r2, [r0, r4, lsl #1]
; TabCos[k*i]
ldr r3, =TabCos
; TabSin[k*i]
ldr r9, =TabSin
; k*i->r6
mul r6, r1, r4
;(k*i)%64
and r6,#63 ;On fait un masque pour faire mod 64
; TabCos[r6]
ldrsh r3,[r3,r6,lsl #1]
; TabSin[r6]
ldrsh r9,[r9,r6,lsl #1]
; Signal64ech[i] * TabCos[k*i]
mul r10, r2, r3
; Signal64ech[i] * TabSin[k*i]
mul r11, r2, r9
; on ajoute notre réelle et imag au calcul
add r7, r10
add r8, r11
; incrémenter l'itérateur
add r4, #1
b BoucleFor
FinBoucle
; on met le résultat à disposition dans r0
smull r1, r0, r7, r7 ;NB :poids fort en 2eme pos
smlal r1, r0, r8, r8 ;
pop {r4-r11}
pop {pc}
endp
;Section ROM code (read only) :
AREA Trigo, DATA, READONLY
; codage fractionnaire 1.15
TabCos
DCW 32767 ; 0 0x7fff 0.99997
DCW 32610 ; 1 0x7f62 0.99518
DCW 32138 ; 2 0x7d8a 0.98077
DCW 31357 ; 3 0x7a7d 0.95694
DCW 30274 ; 4 0x7642 0.92389
DCW 28899 ; 5 0x70e3 0.88193
DCW 27246 ; 6 0x6a6e 0.83148
DCW 25330 ; 7 0x62f2 0.77301
DCW 23170 ; 8 0x5a82 0.70709
DCW 20788 ; 9 0x5134 0.63440
DCW 18205 ; 10 0x471d 0.55557
DCW 15447 ; 11 0x3c57 0.47141
DCW 12540 ; 12 0x30fc 0.38269
DCW 9512 ; 13 0x2528 0.29028
DCW 6393 ; 14 0x18f9 0.19510
DCW 3212 ; 15 0x0c8c 0.09802
DCW 0 ; 16 0x0000 0.00000
DCW -3212 ; 17 0xf374 -0.09802
DCW -6393 ; 18 0xe707 -0.19510
DCW -9512 ; 19 0xdad8 -0.29028
DCW -12540 ; 20 0xcf04 -0.38269
DCW -15447 ; 21 0xc3a9 -0.47141
DCW -18205 ; 22 0xb8e3 -0.55557
DCW -20788 ; 23 0xaecc -0.63440
DCW -23170 ; 24 0xa57e -0.70709
DCW -25330 ; 25 0x9d0e -0.77301
DCW -27246 ; 26 0x9592 -0.83148
DCW -28899 ; 27 0x8f1d -0.88193
DCW -30274 ; 28 0x89be -0.92389
DCW -31357 ; 29 0x8583 -0.95694
DCW -32138 ; 30 0x8276 -0.98077
DCW -32610 ; 31 0x809e -0.99518
DCW -32768 ; 32 0x8000 -1.00000
DCW -32610 ; 33 0x809e -0.99518
DCW -32138 ; 34 0x8276 -0.98077
DCW -31357 ; 35 0x8583 -0.95694
DCW -30274 ; 36 0x89be -0.92389
DCW -28899 ; 37 0x8f1d -0.88193
DCW -27246 ; 38 0x9592 -0.83148
DCW -25330 ; 39 0x9d0e -0.77301
DCW -23170 ; 40 0xa57e -0.70709
DCW -20788 ; 41 0xaecc -0.63440
DCW -18205 ; 42 0xb8e3 -0.55557
DCW -15447 ; 43 0xc3a9 -0.47141
DCW -12540 ; 44 0xcf04 -0.38269
DCW -9512 ; 45 0xdad8 -0.29028
DCW -6393 ; 46 0xe707 -0.19510
DCW -3212 ; 47 0xf374 -0.09802
DCW 0 ; 48 0x0000 0.00000
DCW 3212 ; 49 0x0c8c 0.09802
DCW 6393 ; 50 0x18f9 0.19510
DCW 9512 ; 51 0x2528 0.29028
DCW 12540 ; 52 0x30fc 0.38269
DCW 15447 ; 53 0x3c57 0.47141
DCW 18205 ; 54 0x471d 0.55557
DCW 20788 ; 55 0x5134 0.63440
DCW 23170 ; 56 0x5a82 0.70709
DCW 25330 ; 57 0x62f2 0.77301
DCW 27246 ; 58 0x6a6e 0.83148
DCW 28899 ; 59 0x70e3 0.88193
DCW 30274 ; 60 0x7642 0.92389
DCW 31357 ; 61 0x7a7d 0.95694
DCW 32138 ; 62 0x7d8a 0.98077
DCW 32610 ; 63 0x7f62 0.99518
TabSin
DCW 0 ; 0 0x0000 0.00000
DCW 3212 ; 1 0x0c8c 0.09802
DCW 6393 ; 2 0x18f9 0.19510
DCW 9512 ; 3 0x2528 0.29028
DCW 12540 ; 4 0x30fc 0.38269
DCW 15447 ; 5 0x3c57 0.47141
DCW 18205 ; 6 0x471d 0.55557
DCW 20788 ; 7 0x5134 0.63440
DCW 23170 ; 8 0x5a82 0.70709
DCW 25330 ; 9 0x62f2 0.77301
DCW 27246 ; 10 0x6a6e 0.83148
DCW 28899 ; 11 0x70e3 0.88193
DCW 30274 ; 12 0x7642 0.92389
DCW 31357 ; 13 0x7a7d 0.95694
DCW 32138 ; 14 0x7d8a 0.98077
DCW 32610 ; 15 0x7f62 0.99518
DCW 32767 ; 16 0x7fff 0.99997
DCW 32610 ; 17 0x7f62 0.99518
DCW 32138 ; 18 0x7d8a 0.98077
DCW 31357 ; 19 0x7a7d 0.95694
DCW 30274 ; 20 0x7642 0.92389
DCW 28899 ; 21 0x70e3 0.88193
DCW 27246 ; 22 0x6a6e 0.83148
DCW 25330 ; 23 0x62f2 0.77301
DCW 23170 ; 24 0x5a82 0.70709
DCW 20788 ; 25 0x5134 0.63440
DCW 18205 ; 26 0x471d 0.55557
DCW 15447 ; 27 0x3c57 0.47141
DCW 12540 ; 28 0x30fc 0.38269
DCW 9512 ; 29 0x2528 0.29028
DCW 6393 ; 30 0x18f9 0.19510
DCW 3212 ; 31 0x0c8c 0.09802
DCW 0 ; 32 0x0000 0.00000
DCW -3212 ; 33 0xf374 -0.09802
DCW -6393 ; 34 0xe707 -0.19510
DCW -9512 ; 35 0xdad8 -0.29028
DCW -12540 ; 36 0xcf04 -0.38269
DCW -15447 ; 37 0xc3a9 -0.47141
DCW -18205 ; 38 0xb8e3 -0.55557
DCW -20788 ; 39 0xaecc -0.63440
DCW -23170 ; 40 0xa57e -0.70709
DCW -25330 ; 41 0x9d0e -0.77301
DCW -27246 ; 42 0x9592 -0.83148
DCW -28899 ; 43 0x8f1d -0.88193
DCW -30274 ; 44 0x89be -0.92389
DCW -31357 ; 45 0x8583 -0.95694
DCW -32138 ; 46 0x8276 -0.98077
DCW -32610 ; 47 0x809e -0.99518
DCW -32768 ; 48 0x8000 -1.00000
DCW -32610 ; 49 0x809e -0.99518
DCW -32138 ; 50 0x8276 -0.98077
DCW -31357 ; 51 0x8583 -0.95694
DCW -30274 ; 52 0x89be -0.92389
DCW -28899 ; 53 0x8f1d -0.88193
DCW -27246 ; 54 0x9592 -0.83148
DCW -25330 ; 55 0x9d0e -0.77301
DCW -23170 ; 56 0xa57e -0.70709
DCW -20788 ; 57 0xaecc -0.63440
DCW -18205 ; 58 0xb8e3 -0.55557
DCW -15447 ; 59 0xc3a9 -0.47141
DCW -12540 ; 60 0xcf04 -0.38269
DCW -9512 ; 61 0xdad8 -0.29028
DCW -6393 ; 62 0xe707 -0.19510
DCW -3212 ; 63 0xf374 -0.09802
END

View file

@ -0,0 +1,68 @@
AREA Signal, DATA, READONLY
export LeSignal
LeSignal
DCW 0x0fff ; 0 4095 0.99976
DCW 0x0ff6 ; 1 4086 0.99756
DCW 0x0fd9 ; 2 4057 0.99048
DCW 0x0fa8 ; 3 4008 0.97852
DCW 0x0f64 ; 4 3940 0.96191
DCW 0x0f0e ; 5 3854 0.94092
DCW 0x0ea7 ; 6 3751 0.91577
DCW 0x0e2f ; 7 3631 0.88647
DCW 0x0da8 ; 8 3496 0.85352
DCW 0x0d13 ; 9 3347 0.81714
DCW 0x0c72 ; 10 3186 0.77783
DCW 0x0bc5 ; 11 3013 0.73560
DCW 0x0b10 ; 12 2832 0.69141
DCW 0x0a53 ; 13 2643 0.64526
DCW 0x0990 ; 14 2448 0.59766
DCW 0x08c9 ; 15 2249 0.54907
DCW 0x0800 ; 16 2048 0.50000
DCW 0x0737 ; 17 1847 0.45093
DCW 0x0670 ; 18 1648 0.40234
DCW 0x05ad ; 19 1453 0.35474
DCW 0x04f0 ; 20 1264 0.30859
DCW 0x043b ; 21 1083 0.26440
DCW 0x038e ; 22 910 0.22217
DCW 0x02ed ; 23 749 0.18286
DCW 0x0258 ; 24 600 0.14648
DCW 0x01d1 ; 25 465 0.11353
DCW 0x0159 ; 26 345 0.08423
DCW 0x00f2 ; 27 242 0.05908
DCW 0x009c ; 28 156 0.03809
DCW 0x0058 ; 29 88 0.02148
DCW 0x0027 ; 30 39 0.00952
DCW 0x000a ; 31 10 0.00244
DCW 0x0000 ; 32 0 0.00000
DCW 0x000a ; 33 10 0.00244
DCW 0x0027 ; 34 39 0.00952
DCW 0x0058 ; 35 88 0.02148
DCW 0x009c ; 36 156 0.03809
DCW 0x00f2 ; 37 242 0.05908
DCW 0x0159 ; 38 345 0.08423
DCW 0x01d1 ; 39 465 0.11353
DCW 0x0258 ; 40 600 0.14648
DCW 0x02ed ; 41 749 0.18286
DCW 0x038e ; 42 910 0.22217
DCW 0x043b ; 43 1083 0.26440
DCW 0x04f0 ; 44 1264 0.30859
DCW 0x05ad ; 45 1453 0.35474
DCW 0x0670 ; 46 1648 0.40234
DCW 0x0737 ; 47 1847 0.45093
DCW 0x0800 ; 48 2048 0.50000
DCW 0x08c9 ; 49 2249 0.54907
DCW 0x0990 ; 50 2448 0.59766
DCW 0x0a53 ; 51 2643 0.64526
DCW 0x0b10 ; 52 2832 0.69141
DCW 0x0bc5 ; 53 3013 0.73560
DCW 0x0c72 ; 54 3186 0.77783
DCW 0x0d13 ; 55 3347 0.81714
DCW 0x0da8 ; 56 3496 0.85352
DCW 0x0e2f ; 57 3631 0.88647
DCW 0x0ea7 ; 58 3751 0.91577
DCW 0x0f0e ; 59 3854 0.94092
DCW 0x0f64 ; 60 3940 0.96191
DCW 0x0fa8 ; 61 4008 0.97852
DCW 0x0fd9 ; 62 4057 0.99048
DCW 0x0ff6 ; 63 4086 0.99756
END

View file

@ -0,0 +1,38 @@
clc
clear
N = input('Nombre d''échantilllons pour ce signal : ');
Frel = input('Fréquence normalisée (nombre de périodes dans la durée totale) : ');
Ph0 = input('Phase a l''origine (en degrés) : ');
Ph0 = Ph0 * pi / 180.0; % a present en radian
Ampl = 2048;
Offset = 2048;
%% Création du fichier .asm
fileID = fopen(['Signal.asm'], 'w');
fprintf(fileID,'\tAREA Signal, DATA, READONLY\n');
fprintf(fileID,'\texport LeSignal\n');
fprintf(fileID,'LeSignal\n');
for i = 1: N
% fonction a modifier en fonction des besoins
Sig(i) = Offset + Ampl * cos( 2*pi*Frel*(i-1)/N + Ph0 );
% arrondi
iSig = int16(Sig(i));
% bornage du signal similaire a la sortie brute de l'ADC 12 bits
if ( iSig < 0 )
iSig = 0;
end
if ( iSig > 4095 )
iSig = 4095;
end
fprintf(fileID,'\tDCW\t0x%04x\t; %2d %4d %7.5f\n',iSig, i-1, iSig, double(iSig) / 4096.0 );
end
fprintf(fileID,'\tEND\n');
fclose(fileID);
plot(Sig);

View file

@ -0,0 +1,36 @@
#include "DriverJeuLaser.h"
extern short int LeSignal[];
extern int DFT_ModuleAuCarre( short int * Signal64ech, char k);
int moduleSignal[64] ;
int main(void)
{
// ===========================================================================
// ============= INIT PERIPH (faites qu'une seule fois) =====================
// ===========================================================================
// Après exécution : le coeur CPU est clocké à 72MHz ainsi que tous les timers
CLOCK_Configure();
//============================================================================
for (int j=0; j<64 ; j++) {
moduleSignal[j] = DFT_ModuleAuCarre(&(LeSignal[0]), j);
}
while (1)
{
}
}

View file

@ -0,0 +1,335 @@
;******************** (C) COPYRIGHT 2011 STMicroelectronics ********************
;* File Name : startup_stm32f10x_md.s
;* Author : MCD Application Team
;* Version : V3.5.0
;* Date : 11-March-2011
;* Description : STM32F10x Medium Density Devices vector table for MDK-ARM
;* toolchain.
;* This module performs:
;* - Set the initial SP
;* - Set the initial PC == Reset_Handler
;* - Set the vector table entries with the exceptions ISR address
;* - Configure the clock system
;* - Branches to __main in the C library (which eventually
;* calls main()).
;* After Reset the CortexM3 processor is in Thread mode,
;* priority is Privileged, and the Stack is set to Main.
;* <<< Use Configuration Wizard in Context Menu >>>
;*******************************************************************************
; THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
; WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME.
; AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY DIRECT,
; INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM THE
; CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE CODING
; INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
;*******************************************************************************
; Amount of memory (in bytes) allocated for Stack
; Tailor this value to your application needs
; <h> Stack Configuration
; <o> Stack Size (in Bytes) <0x0-0xFFFFFFFF:8>
; </h>
Stack_Size EQU 0x00000400
AREA STACK, NOINIT, READWRITE, ALIGN=3
Stack_Mem SPACE Stack_Size
__initial_sp
; <h> Heap Configuration
; <o> Heap Size (in Bytes) <0x0-0xFFFFFFFF:8>
; </h>
Heap_Size EQU 0x00000200
AREA HEAP, NOINIT, READWRITE, ALIGN=3
__heap_base
Heap_Mem SPACE Heap_Size
__heap_limit
PRESERVE8
THUMB
; Vector Table Mapped to Address 0 at Reset
AREA RESET, DATA, READONLY
EXPORT __Vectors
EXPORT __Vectors_End
EXPORT __Vectors_Size
__Vectors DCD __initial_sp ; Top of Stack
DCD Reset_Handler ; Reset Handler
DCD NMI_Handler ; NMI Handler
DCD HardFault_Handler ; Hard Fault Handler
DCD MemManage_Handler ; MPU Fault Handler
DCD BusFault_Handler ; Bus Fault Handler
DCD UsageFault_Handler ; Usage Fault Handler
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD SVC_Handler ; SVCall Handler
DCD DebugMon_Handler ; Debug Monitor Handler
DCD 0 ; Reserved
DCD PendSV_Handler ; PendSV Handler
DCD SysTick_Handler ; SysTick Handler
; External Interrupts
DCD WWDG_IRQHandler ; Window Watchdog
DCD PVD_IRQHandler ; PVD through EXTI Line detect
DCD TAMPER_IRQHandler ; Tamper
DCD RTC_IRQHandler ; RTC
DCD FLASH_IRQHandler ; Flash
DCD RCC_IRQHandler ; RCC
DCD EXTI0_IRQHandler ; EXTI Line 0
DCD EXTI1_IRQHandler ; EXTI Line 1
DCD EXTI2_IRQHandler ; EXTI Line 2
DCD EXTI3_IRQHandler ; EXTI Line 3
DCD EXTI4_IRQHandler ; EXTI Line 4
DCD DMA1_Channel1_IRQHandler ; DMA1 Channel 1
DCD DMA1_Channel2_IRQHandler ; DMA1 Channel 2
DCD DMA1_Channel3_IRQHandler ; DMA1 Channel 3
DCD DMA1_Channel4_IRQHandler ; DMA1 Channel 4
DCD DMA1_Channel5_IRQHandler ; DMA1 Channel 5
DCD DMA1_Channel6_IRQHandler ; DMA1 Channel 6
DCD DMA1_Channel7_IRQHandler ; DMA1 Channel 7
DCD ADC1_2_IRQHandler ; ADC1_2
DCD USB_HP_CAN1_TX_IRQHandler ; USB High Priority or CAN1 TX
DCD USB_LP_CAN1_RX0_IRQHandler ; USB Low Priority or CAN1 RX0
DCD CAN1_RX1_IRQHandler ; CAN1 RX1
DCD CAN1_SCE_IRQHandler ; CAN1 SCE
DCD EXTI9_5_IRQHandler ; EXTI Line 9..5
DCD TIM1_BRK_IRQHandler ; TIM1 Break
DCD TIM1_UP_IRQHandler ; TIM1 Update
DCD TIM1_TRG_COM_IRQHandler ; TIM1 Trigger and Commutation
DCD TIM1_CC_IRQHandler ; TIM1 Capture Compare
DCD TIM2_IRQHandler ; TIM2
DCD TIM3_IRQHandler ; TIM3
DCD TIM4_IRQHandler ; TIM4
DCD I2C1_EV_IRQHandler ; I2C1 Event
DCD I2C1_ER_IRQHandler ; I2C1 Error
DCD I2C2_EV_IRQHandler ; I2C2 Event
DCD I2C2_ER_IRQHandler ; I2C2 Error
DCD SPI1_IRQHandler ; SPI1
DCD SPI2_IRQHandler ; SPI2
DCD USART1_IRQHandler ; USART1
DCD USART2_IRQHandler ; USART2
DCD USART3_IRQHandler ; USART3
DCD EXTI15_10_IRQHandler ; EXTI Line 15..10
DCD RTCAlarm_IRQHandler ; RTC Alarm through EXTI Line
DCD USBWakeUp_IRQHandler ; USB Wakeup from suspend
__Vectors_End
__Vectors_Size EQU __Vectors_End - __Vectors
AREA |.text|, CODE, READONLY
; Reset handler
Reset_Handler PROC
EXPORT Reset_Handler [WEAK]
IMPORT __main
LDR R0, =SystemInit
BLX R0
;
; Enable UsageFault, MemFault and Busfault interrupts
;
_SHCSR EQU 0xE000ED24 ; SHCSR is located at address 0xE000ED24
LDR.W R0, =_SHCSR
LDR R1, [R0] ; Read CPACR
ORR R1, R1, #(0x7 << 16) ; Set bits 16,17,18 to enable usagefault, busfault, memfault interrupts
STR R1, [R0] ; Write back the modified value to the CPACR
DSB ; Wait for store to complete
;
; Set priority grouping (PRIGROUP) in AIRCR to 3 (16 levels for group priority and 0 for subpriority)
;
_AIRCR EQU 0xE000ED0C
_AIRCR_VAL EQU 0x05FA0300
LDR.W R0, =_AIRCR
LDR.W R1, =_AIRCR_VAL
STR R1,[R0]
;
; Finaly, jump to main function (void main (void))
;
LDR R0, =__main
BX R0
ENDP
SystemInit PROC
EXPORT SystemInit [WEAK]
BX LR
ENDP
; Dummy Exception Handlers (infinite loops which can be modified)
NMI_Handler PROC
EXPORT NMI_Handler [WEAK]
B .
ENDP
HardFault_Handler\
PROC
EXPORT HardFault_Handler [WEAK]
B .
ENDP
MemManage_Handler\
PROC
EXPORT MemManage_Handler [WEAK]
B .
ENDP
BusFault_Handler\
PROC
EXPORT BusFault_Handler [WEAK]
B .
ENDP
UsageFault_Handler\
PROC
EXPORT UsageFault_Handler [WEAK]
B .
ENDP
SVC_Handler PROC
EXPORT SVC_Handler [WEAK]
B .
ENDP
DebugMon_Handler\
PROC
EXPORT DebugMon_Handler [WEAK]
B .
ENDP
PendSV_Handler PROC
EXPORT PendSV_Handler [WEAK]
B .
ENDP
SysTick_Handler PROC
EXPORT SysTick_Handler [WEAK]
B .
ENDP
Default_Handler PROC
EXPORT WWDG_IRQHandler [WEAK]
EXPORT PVD_IRQHandler [WEAK]
EXPORT TAMPER_IRQHandler [WEAK]
EXPORT RTC_IRQHandler [WEAK]
EXPORT FLASH_IRQHandler [WEAK]
EXPORT RCC_IRQHandler [WEAK]
EXPORT EXTI0_IRQHandler [WEAK]
EXPORT EXTI1_IRQHandler [WEAK]
EXPORT EXTI2_IRQHandler [WEAK]
EXPORT EXTI3_IRQHandler [WEAK]
EXPORT EXTI4_IRQHandler [WEAK]
EXPORT DMA1_Channel1_IRQHandler [WEAK]
EXPORT DMA1_Channel2_IRQHandler [WEAK]
EXPORT DMA1_Channel3_IRQHandler [WEAK]
EXPORT DMA1_Channel4_IRQHandler [WEAK]
EXPORT DMA1_Channel5_IRQHandler [WEAK]
EXPORT DMA1_Channel6_IRQHandler [WEAK]
EXPORT DMA1_Channel7_IRQHandler [WEAK]
EXPORT ADC1_2_IRQHandler [WEAK]
EXPORT USB_HP_CAN1_TX_IRQHandler [WEAK]
EXPORT USB_LP_CAN1_RX0_IRQHandler [WEAK]
EXPORT CAN1_RX1_IRQHandler [WEAK]
EXPORT CAN1_SCE_IRQHandler [WEAK]
EXPORT EXTI9_5_IRQHandler [WEAK]
EXPORT TIM1_BRK_IRQHandler [WEAK]
EXPORT TIM1_UP_IRQHandler [WEAK]
EXPORT TIM1_TRG_COM_IRQHandler [WEAK]
EXPORT TIM1_CC_IRQHandler [WEAK]
EXPORT TIM2_IRQHandler [WEAK]
EXPORT TIM3_IRQHandler [WEAK]
EXPORT TIM4_IRQHandler [WEAK]
EXPORT I2C1_EV_IRQHandler [WEAK]
EXPORT I2C1_ER_IRQHandler [WEAK]
EXPORT I2C2_EV_IRQHandler [WEAK]
EXPORT I2C2_ER_IRQHandler [WEAK]
EXPORT SPI1_IRQHandler [WEAK]
EXPORT SPI2_IRQHandler [WEAK]
EXPORT USART1_IRQHandler [WEAK]
EXPORT USART2_IRQHandler [WEAK]
EXPORT USART3_IRQHandler [WEAK]
EXPORT EXTI15_10_IRQHandler [WEAK]
EXPORT RTCAlarm_IRQHandler [WEAK]
EXPORT USBWakeUp_IRQHandler [WEAK]
WWDG_IRQHandler
PVD_IRQHandler
TAMPER_IRQHandler
RTC_IRQHandler
FLASH_IRQHandler
RCC_IRQHandler
EXTI0_IRQHandler
EXTI1_IRQHandler
EXTI2_IRQHandler
EXTI3_IRQHandler
EXTI4_IRQHandler
DMA1_Channel1_IRQHandler
DMA1_Channel2_IRQHandler
DMA1_Channel3_IRQHandler
DMA1_Channel4_IRQHandler
DMA1_Channel5_IRQHandler
DMA1_Channel6_IRQHandler
DMA1_Channel7_IRQHandler
ADC1_2_IRQHandler
USB_HP_CAN1_TX_IRQHandler
USB_LP_CAN1_RX0_IRQHandler
CAN1_RX1_IRQHandler
CAN1_SCE_IRQHandler
EXTI9_5_IRQHandler
TIM1_BRK_IRQHandler
TIM1_UP_IRQHandler
TIM1_TRG_COM_IRQHandler
TIM1_CC_IRQHandler
TIM2_IRQHandler
TIM3_IRQHandler
TIM4_IRQHandler
I2C1_EV_IRQHandler
I2C1_ER_IRQHandler
I2C2_EV_IRQHandler
I2C2_ER_IRQHandler
SPI1_IRQHandler
SPI2_IRQHandler
USART1_IRQHandler
USART2_IRQHandler
USART3_IRQHandler
EXTI15_10_IRQHandler
RTCAlarm_IRQHandler
USBWakeUp_IRQHandler
B .
ENDP
ALIGN
;*******************************************************************************
; User Stack and Heap initialization
;*******************************************************************************
IF :DEF:__MICROLIB
EXPORT __initial_sp
EXPORT __heap_base
EXPORT __heap_limit
ELSE
IMPORT __use_two_region_memory
EXPORT __user_initial_stackheap
__user_initial_stackheap
LDR R0, = Heap_Mem
LDR R1, =(Stack_Mem + Stack_Size)
LDR R2, = (Heap_Mem + Heap_Size)
LDR R3, = Stack_Mem
BX LR
ALIGN
ENDIF
END
;******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE*****

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,345 @@
/**
* Bibliotheque DriverJeuLaser (ancienne gassp72 adaptée 2021 - TR)
*
* GPIO - ADC - Sequenceur - System Timer - PWM - 72 MHz
* Modifs :
* enlèvement de tout ce qui est inutile dans le .h
* ajout de fonctions GPIO dans le .c pour utilisation en ASM ou en C :
* - GPIOA_Set(char Broche), GPIOB_Set(char Broche), GPIOC_Set(char Broche)
* - GPIOA_Clear(char Broche), GPIOB_Clear(char Broche), GPIOC_Clear(char Broche)
*
* ajout d'une fonction qui impose une valeur de PWM (TIM3_CCR3)
* PWM_Set_Value_On_TIM3_C3( int Val)
* permet en ASM ou en C de fixer la valeur de PWM
* Ajout de commentaires
*/
#ifndef DRIVERJEULASER_H__
#define DRIVERJEULASER_H__
#include "stm32f10x.h"
//**********************************************************************************************************
//--------------------- CONFIGURATION CLOCK DU STM32 --------------------------------------
//**********************************************************************************************************
/**
* @brief Configure l'ensemble des horloges du uC
* @note horloge systeme (config statique a 72 MHz pour le STM32F103)
* @param None
* @retval None
*/
void CLOCK_Configure(void);
//**********************************************************************************************************
//--------------------- LES TIMERS GENERAL PURPOSE TIM1 à TIM 4 ------------------------------
//**********************************************************************************************************
/**
* @brief Configure un Timer TIM1 à TIM4 avec une périodicité donnée
* @note L' horloge des 4 timers a une fréquence de 72MHz
* @param *Timer = TIM1 ou TIM2 ou TIM3 ou TIM4
* @param Durée_ticks : nombre de pas (tick) comptés à 72 MHz pour faire déborder le timer
* La période de débordement du Timer est donc T = Durée_ticks * Tck, avec Tck = 1/72 000 000
* @retval None
*/
void Timer_1234_Init_ff( TIM_TypeDef *Timer, u32 Duree_ticks );
/**
* Macros de base pour utiliser les timers
*/
// bloque le timer
#define Bloque_Timer(Timer) Timer->CR1=(Timer->CR1)&~(1<<0)
// Lance timer
#define Run_Timer(Timer) Timer->CR1=(Timer->CR1)|(1<<0)
/**
* @brief Associe une fonction d'interruption (callback) lors du débordement d'un timer
* @note
* @param *Timer = TIM1 ou TIM2 ou TIM3 ou TIM4
* @param Prio : niveau de priorité de l'interruption (0 -> priorité max, 15 -> priorité min)
* @param IT_function : le nom de la fonction Callback à appeler lors de l'interruption
* @retval None
*/
void Active_IT_Debordement_Timer( TIM_TypeDef *Timer, char Prio, void (*IT_function)(void) );
//*********************************************************************************************************
//--------------------- PWM TIM1 to TIM 4 ------------------------------
//*********************************************************************************************************
/**
* @brief Configure un timer en PWM
* @note
* @param *Timer = TIM1 ou TIM2 ou TIM3 ou TIM4
* @param voie : un des 4 canaux possibles 1 à 4.
* @param Periode_ticks : nombre de pas (tick) comptés à 72 MHz pour faire déborder le timer
* La période de débordement du Timer est donc T = Durée_ticks * Tck, avec Tck = 1/72 000 000
* @retval Retourne la période en tick (normalement la même que le param d'entrée sauf si PSC utilisé
*/
unsigned short int PWM_Init_ff( TIM_TypeDef *Timer, char Voie, u32 Periode_ticks );
/**
* @brief Fixe une valeur de PWM, Val, en tick horloge. La rapport cyclique effectif
* est donc : rcy = Thaut_ticks / Periode_ticks
* @note spécifique Jeu Laser, PWM liée exclusivement au TIM3, chan3
* @param Thaut_ticks : durée de l'état haut d'une impulsion en Ticks
* @retval None
*/
void PWM_Set_Value_TIM3_Ch3( unsigned short int Thaut_ticks);
//**********************************************************************************************************
//--------------------- LE SYSTICK TIMER, Part of Cortex M3 ------------------------------
//**********************************************************************************************************
/**
* @brief Configure le timer Systick avec une périodicité donnée
* @note Ce timer ne peut servir qu'à créer des temporisations ou générer des interruption
* ce n'est pas à proprement parler un périphérique, il fait partie du Cortex M3
* Ce timer est un 24 bits
* @param Periode_ticks : nombre de pas (tick) comptés à 72 MHz pour établir la périodicité
* La période de débordement du Timer est donc T = Durée_ticks * Tck, avec Tck = 1/72 000 000
* @retval None
*/
void Systick_Period_ff( unsigned int Periode_ticks );
/**
* @brief Associe une fonction d'interruption (callback) lors du débordement du Systick
* @note
* @param Prio : niveau de priorité de l'interruption (0 -> priorité max, 15 -> priorité min)
* @param IT_function : le nom de la fonction Callback à appeler lors de l'interruption
* @retval None
*/
void Systick_Prio_IT( char Prio, void (*Systick_function)(void) );
/**
* Macros de base pour utiliser le Systick
*/
#define SysTick_On ((SysTick->CTRL)=(SysTick->CTRL)|1<<0)
#define SysTick_Off ((SysTick->CTRL)=(SysTick->CTRL)& ~(1<<0))
#define SysTick_Enable_IT ((SysTick->CTRL)=(SysTick->CTRL)|1<<1)
#define SysTick_Disable_IT ((SysTick->CTRL)=(SysTick->CTRL)& ~(1<<1))
//**********************************************************************************************************
//--------------------- LE SYSTICK TIMER, Part of Cortex M3 ------------------------------
//**********************************************************************************************************
/**
* @brief Active l'ADC du STM32, configure la durée de prélèvement de l'échantillon (temps
* de fermeture du switch d'acquisition
* @note
* @param ADC : précise de quel ADC il s'agit, ADC1 ou ADC2
* @param Duree_Ech_ticks : dirée de fermeture du switch d'échantillonnage en Tick d'horloge CPU
* exemple pour 1µs on choisira 72.
* @retval Nombre de Tick réellement pris en compte
*/
unsigned int Init_TimingADC_ActiveADC_ff( ADC_TypeDef * ADC, u32 Duree_Ech_ticks );
/**
* @brief Sélectionne la voie à convertir
* @note Attention, la voie va de 0 à 15 et n'est pas directement lié au n°de GPIO
* @param ADC : précise de quel ADC il s'agit, ADC1 ou ADC2
* @param Voie_ADC : 1 à 15
* @retval None
*/
void Single_Channel_ADC( ADC_TypeDef * ADC, char Voie_ADC );
/**
* @brief Permet lier le déclenchement au débordement d'un timer, spécifie également
* la période de débordement du timer
* @note pas besoin de régler le timer avec une autre fonction dédiée timer
* @param ADC : précise de quel ADC il s'agit, ADC1 ou ADC2
* @param Source : indique le timer qui déclenche l'ADC choix dans les define ci-dessous
* @param Periode_ticks : nombre de pas (tick) comptés à 72 MHz pour faire déborder le timer
* La période de débordement du Timer est donc T = Durée_ticks * Tck, avec Tck = 1/72 000 000
* @retval None
*/
// param pour Source :
#define TIM1_CC1 0
#define TIM1_CC2 1
#define TIM1_CC3 2
#define TIM2_CC2 3
#define TIM4_CC4 5
void Init_Conversion_On_Trig_Timer_ff( ADC_TypeDef * ADC, char Source, u32 Periode_ticks );
//**********************************************************************************************************
//--------------------- ANALOG INPUT ADC & DMA ------------------------------
//**********************************************************************************************************
/**
* @brief Permer de lier l'ADC à un tableau en RAM pour une DMA
* @note
* @param Circ : circular. Si '0', en fin de DMA le ptr d'@ reste inchangé
* si '1' le ptr d'@ se recale à celle du début.
* @param Ptr_Table_DMA : contient l'@ de début de zone RAM à écrire
* @retval None
*/
void Init_ADC1_DMA1(char Circ, short int *Ptr_Table_DMA);
/**
* @brief Lance une DMA sur le nombre de points spécifie. Les resultats seront stockes
* dans la zone de RAM écrite est indiquée lors de l'appel de la fonction Init_ADC1_DMA1
* @note
* @param NbEchDMA est le nombre d'échantillons à stocker.
* @retval None
*/
void Start_DMA1( u16 NbEchDMA );
// arret DMA
#define Stop_DMA1 DMA1_Channel1->CCR =(DMA1_Channel1->CCR) &~0x1;
/**
* @brief Attend la fin d'un cycle de DMA. la duree depend de la periode d'acquisition
* et du nombre d'echantillons
* @note fonction d'attente (bloquante)
* @param None
* @retval None
*/
void Wait_On_End_Of_DMA1(void);
//**********************************************************************************************************
//--------------------- GPIO ------------------------------
//**********************************************************************************************************
/**
* @brief Initialisation d'un GPIO (A à C), pin x.
* peut être configuré :
* -> Input ou output
* -> architecture technologique (push-pull, open drain...)
* @note
* @param Port : GPIOA, GPIOB, GPIOC
* @param Broche : 0 à 15
* @param Sens : INPUT ou OUTPUT
* @param Techno : voir define ci dessous
* @retval 1 erreur, 0 si OK
*/
// Sens
#define INPUT 'i'
#define OUTPUT 'o'
// Techno pour pin en entrée (INPUT)
#define ANALOG 0
#define INPUT_FLOATING 1
#define INPUT_PULL_DOWN_UP 2
// Techno pour pin en sortie (OUTPUT)
#define OUTPUT_PPULL 0
#define OUTPUT_OPDRAIN 1
#define ALT_PPULL 2
#define ALT_OPDRAIN 3
// Exemple :
// Port_IO_Init(GPIOB, 8, OUTPUT, OUTPUT_PPULL);
// Place le bit 8 du port B en sortie Push-pull
char GPIO_Configure(GPIO_TypeDef * Port, int Broche, int Sens, int Techno);
/**
* @brief Mise à 1 d'une broche GPIO
* @note Une fonction par GPIO
* @param Broche : 0 à 15
* @retval None
*/
void GPIOA_Set(char Broche);
void GPIOB_Set(char Broche);
void GPIOC_Set(char Broche);
/**
* @brief Mise à 0 d'une broche GPIO
* @note Une fonction par GPIO
* @param Broche : 0 à 15
* @retval None
*/
void GPIOA_Clear(char Broche);
void GPIOB_Clear(char Broche);
void GPIOC_Clear(char Broche);
#endif

View file

@ -0,0 +1,56 @@
; Bibliotheque DriverJeuLaser (ancienne gassp72 adaptée 2021 - TR)
; Accès en aux fonctions suivantes :
; GPIO :
; GPIOA_Set(char Broche), GPIOB_Set(char Broche), GPIOC_Set(char Broche)
; GPIOA_Clear(char Broche), GPIOB_Clear(char Broche), GPIOC_Clear(char Broche)
; PWM :
;/**
; * @brief Fixe une valeur de PWM, Val, en tick horloge. La rapport cyclique effectif
; * est donc : rcy = Thaut_ticks / Periode_ticks
; * @note spécifique Jeu Laser, PWM liée exclusivement au TIM3, chan3
; * @param Thaut_ticks : durée de l'état haut d'une impulsion en Ticks
; * @retval None
; */
;void PWM_Set_Value_TIM3_Ch3( unsigned short int Thaut_ticks);
import PWM_Set_Value_TIM3_Ch3
;/**
; * @brief Mise à 1 d'une broche GPIO
; * @note Une fonction par GPIO
; * @param Broche : 0 à 15
; * @retval None
; */
;void GPIOA_Set(char Broche);
import GPIOA_Set
;void GPIOB_Set(char Broche);
import GPIOB_Set
;void GPIOC_Set(char Broche);
import GPIOC_Set
;/**
; * @brief Mise à 0 d'une broche GPIO
; * @note Une fonction par GPIO
; * @param Broche : 0 à 15
; * @retval None
; */
;void GPIOA_Clear(char Broche);
import GPIOA_Clear
;void GPIOB_Clear(char Broche);
import GPIOB_Clear
;void GPIOC_Clear(char Broche);
import GPIOC_Clear
end

View file

@ -0,0 +1,60 @@
PRESERVE8
THUMB
; ====================== zone de réservation de données, ======================================
;Section RAM (read only) :
area mesdata,data,readonly ;réserve une zone dans la RAM pour une utilisation particulière et set les droits
;Section RAM (read write):
area maram,data,readwrite
VarTime dcd 0 ;init variable vartime à 0
EXPORT VarTime
; ===============================================================================================
;constantes (équivalent du #define en C)
TimeValue equ 900000 ;set timevalue à 900 000
EXPORT Delay_100ms ; la fonction Delay_100ms est rendue publique donc utilisable par d'autres modules.
;Section ROM code (read only) :
area moncode,code,readonly
; REMARQUE IMPORTANTE
; Cette manière de créer une temporisation n'est clairement pas la bonne manière de procéder :
; - elle est peu précise
; - la fonction prend tout le temps CPU pour... ne rien faire...
;
; Pour autant, la fonction montre :
; - les boucles en ASM
; - l'accés écr/lec de variable en RAM
; - le mécanisme d'appel / retour sous programme
;
; et donc possède un intérêt pour débuter en ASM pur
Delay_100ms proc ;début de procédure Delay_100ms
ldr r0,=VarTime ; r0 = VarTime
ldr r1,=TimeValue ; r1 = 900 000
str r1,[r0] ; VarTime = TimeValue;
BoucleTempo
ldr r1,[r0]
subs r1,#1
str r1,[r0] ; 3 instructions : VarTime = VarTime - 1
bne BoucleTempo ; retourne au début de la fct BoucleTempo
bx lr ; return : fini la boucle si pas le bne donc quand timer = 0
endp ; fin de procédure
END ; fin programme/code

View file

@ -0,0 +1,32 @@
#include "DriverJeuLaser.h"
extern void Delay_100ms(void);
int main(void)
{
// ===========================================================================
// ============= INIT PERIPH (faites qu'une seule fois) =====================
// ===========================================================================
// Après exécution : le coeur CPU est clocké à 72MHz ainsi que tous les timers
CLOCK_Configure();
// configuration de PortB.1 (PB1) en sortie push-pull
GPIO_Configure(GPIOB, 1, OUTPUT, OUTPUT_PPULL);
//============================================================================
while (1)
{
Delay_100ms();
GPIOB_Set(1);
Delay_100ms();
GPIOB_Clear(1);
}
}

View file

@ -0,0 +1,335 @@
;******************** (C) COPYRIGHT 2011 STMicroelectronics ********************
;* File Name : startup_stm32f10x_md.s
;* Author : MCD Application Team
;* Version : V3.5.0
;* Date : 11-March-2011
;* Description : STM32F10x Medium Density Devices vector table for MDK-ARM
;* toolchain.
;* This module performs:
;* - Set the initial SP
;* - Set the initial PC == Reset_Handler
;* - Set the vector table entries with the exceptions ISR address
;* - Configure the clock system
;* - Branches to __main in the C library (which eventually
;* calls main()).
;* After Reset the CortexM3 processor is in Thread mode,
;* priority is Privileged, and the Stack is set to Main.
;* <<< Use Configuration Wizard in Context Menu >>>
;*******************************************************************************
; THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
; WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME.
; AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY DIRECT,
; INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM THE
; CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE CODING
; INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
;*******************************************************************************
; Amount of memory (in bytes) allocated for Stack
; Tailor this value to your application needs
; <h> Stack Configuration
; <o> Stack Size (in Bytes) <0x0-0xFFFFFFFF:8>
; </h>
Stack_Size EQU 0x00000400
AREA STACK, NOINIT, READWRITE, ALIGN=3
Stack_Mem SPACE Stack_Size
__initial_sp
; <h> Heap Configuration
; <o> Heap Size (in Bytes) <0x0-0xFFFFFFFF:8>
; </h>
Heap_Size EQU 0x00000200
AREA HEAP, NOINIT, READWRITE, ALIGN=3
__heap_base
Heap_Mem SPACE Heap_Size
__heap_limit
PRESERVE8
THUMB
; Vector Table Mapped to Address 0 at Reset
AREA RESET, DATA, READONLY
EXPORT __Vectors
EXPORT __Vectors_End
EXPORT __Vectors_Size
__Vectors DCD __initial_sp ; Top of Stack
DCD Reset_Handler ; Reset Handler
DCD NMI_Handler ; NMI Handler
DCD HardFault_Handler ; Hard Fault Handler
DCD MemManage_Handler ; MPU Fault Handler
DCD BusFault_Handler ; Bus Fault Handler
DCD UsageFault_Handler ; Usage Fault Handler
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD SVC_Handler ; SVCall Handler
DCD DebugMon_Handler ; Debug Monitor Handler
DCD 0 ; Reserved
DCD PendSV_Handler ; PendSV Handler
DCD SysTick_Handler ; SysTick Handler
; External Interrupts
DCD WWDG_IRQHandler ; Window Watchdog
DCD PVD_IRQHandler ; PVD through EXTI Line detect
DCD TAMPER_IRQHandler ; Tamper
DCD RTC_IRQHandler ; RTC
DCD FLASH_IRQHandler ; Flash
DCD RCC_IRQHandler ; RCC
DCD EXTI0_IRQHandler ; EXTI Line 0
DCD EXTI1_IRQHandler ; EXTI Line 1
DCD EXTI2_IRQHandler ; EXTI Line 2
DCD EXTI3_IRQHandler ; EXTI Line 3
DCD EXTI4_IRQHandler ; EXTI Line 4
DCD DMA1_Channel1_IRQHandler ; DMA1 Channel 1
DCD DMA1_Channel2_IRQHandler ; DMA1 Channel 2
DCD DMA1_Channel3_IRQHandler ; DMA1 Channel 3
DCD DMA1_Channel4_IRQHandler ; DMA1 Channel 4
DCD DMA1_Channel5_IRQHandler ; DMA1 Channel 5
DCD DMA1_Channel6_IRQHandler ; DMA1 Channel 6
DCD DMA1_Channel7_IRQHandler ; DMA1 Channel 7
DCD ADC1_2_IRQHandler ; ADC1_2
DCD USB_HP_CAN1_TX_IRQHandler ; USB High Priority or CAN1 TX
DCD USB_LP_CAN1_RX0_IRQHandler ; USB Low Priority or CAN1 RX0
DCD CAN1_RX1_IRQHandler ; CAN1 RX1
DCD CAN1_SCE_IRQHandler ; CAN1 SCE
DCD EXTI9_5_IRQHandler ; EXTI Line 9..5
DCD TIM1_BRK_IRQHandler ; TIM1 Break
DCD TIM1_UP_IRQHandler ; TIM1 Update
DCD TIM1_TRG_COM_IRQHandler ; TIM1 Trigger and Commutation
DCD TIM1_CC_IRQHandler ; TIM1 Capture Compare
DCD TIM2_IRQHandler ; TIM2
DCD TIM3_IRQHandler ; TIM3
DCD TIM4_IRQHandler ; TIM4
DCD I2C1_EV_IRQHandler ; I2C1 Event
DCD I2C1_ER_IRQHandler ; I2C1 Error
DCD I2C2_EV_IRQHandler ; I2C2 Event
DCD I2C2_ER_IRQHandler ; I2C2 Error
DCD SPI1_IRQHandler ; SPI1
DCD SPI2_IRQHandler ; SPI2
DCD USART1_IRQHandler ; USART1
DCD USART2_IRQHandler ; USART2
DCD USART3_IRQHandler ; USART3
DCD EXTI15_10_IRQHandler ; EXTI Line 15..10
DCD RTCAlarm_IRQHandler ; RTC Alarm through EXTI Line
DCD USBWakeUp_IRQHandler ; USB Wakeup from suspend
__Vectors_End
__Vectors_Size EQU __Vectors_End - __Vectors
AREA |.text|, CODE, READONLY
; Reset handler
Reset_Handler PROC
EXPORT Reset_Handler [WEAK]
IMPORT __main
LDR R0, =SystemInit
BLX R0
;
; Enable UsageFault, MemFault and Busfault interrupts
;
_SHCSR EQU 0xE000ED24 ; SHCSR is located at address 0xE000ED24
LDR.W R0, =_SHCSR
LDR R1, [R0] ; Read CPACR
ORR R1, R1, #(0x7 << 16) ; Set bits 16,17,18 to enable usagefault, busfault, memfault interrupts
STR R1, [R0] ; Write back the modified value to the CPACR
DSB ; Wait for store to complete
;
; Set priority grouping (PRIGROUP) in AIRCR to 3 (16 levels for group priority and 0 for subpriority)
;
_AIRCR EQU 0xE000ED0C
_AIRCR_VAL EQU 0x05FA0300
LDR.W R0, =_AIRCR
LDR.W R1, =_AIRCR_VAL
STR R1,[R0]
;
; Finaly, jump to main function (void main (void))
;
LDR R0, =__main
BX R0
ENDP
SystemInit PROC
EXPORT SystemInit [WEAK]
BX LR
ENDP
; Dummy Exception Handlers (infinite loops which can be modified)
NMI_Handler PROC
EXPORT NMI_Handler [WEAK]
B .
ENDP
HardFault_Handler\
PROC
EXPORT HardFault_Handler [WEAK]
B .
ENDP
MemManage_Handler\
PROC
EXPORT MemManage_Handler [WEAK]
B .
ENDP
BusFault_Handler\
PROC
EXPORT BusFault_Handler [WEAK]
B .
ENDP
UsageFault_Handler\
PROC
EXPORT UsageFault_Handler [WEAK]
B .
ENDP
SVC_Handler PROC
EXPORT SVC_Handler [WEAK]
B .
ENDP
DebugMon_Handler\
PROC
EXPORT DebugMon_Handler [WEAK]
B .
ENDP
PendSV_Handler PROC
EXPORT PendSV_Handler [WEAK]
B .
ENDP
SysTick_Handler PROC
EXPORT SysTick_Handler [WEAK]
B .
ENDP
Default_Handler PROC
EXPORT WWDG_IRQHandler [WEAK]
EXPORT PVD_IRQHandler [WEAK]
EXPORT TAMPER_IRQHandler [WEAK]
EXPORT RTC_IRQHandler [WEAK]
EXPORT FLASH_IRQHandler [WEAK]
EXPORT RCC_IRQHandler [WEAK]
EXPORT EXTI0_IRQHandler [WEAK]
EXPORT EXTI1_IRQHandler [WEAK]
EXPORT EXTI2_IRQHandler [WEAK]
EXPORT EXTI3_IRQHandler [WEAK]
EXPORT EXTI4_IRQHandler [WEAK]
EXPORT DMA1_Channel1_IRQHandler [WEAK]
EXPORT DMA1_Channel2_IRQHandler [WEAK]
EXPORT DMA1_Channel3_IRQHandler [WEAK]
EXPORT DMA1_Channel4_IRQHandler [WEAK]
EXPORT DMA1_Channel5_IRQHandler [WEAK]
EXPORT DMA1_Channel6_IRQHandler [WEAK]
EXPORT DMA1_Channel7_IRQHandler [WEAK]
EXPORT ADC1_2_IRQHandler [WEAK]
EXPORT USB_HP_CAN1_TX_IRQHandler [WEAK]
EXPORT USB_LP_CAN1_RX0_IRQHandler [WEAK]
EXPORT CAN1_RX1_IRQHandler [WEAK]
EXPORT CAN1_SCE_IRQHandler [WEAK]
EXPORT EXTI9_5_IRQHandler [WEAK]
EXPORT TIM1_BRK_IRQHandler [WEAK]
EXPORT TIM1_UP_IRQHandler [WEAK]
EXPORT TIM1_TRG_COM_IRQHandler [WEAK]
EXPORT TIM1_CC_IRQHandler [WEAK]
EXPORT TIM2_IRQHandler [WEAK]
EXPORT TIM3_IRQHandler [WEAK]
EXPORT TIM4_IRQHandler [WEAK]
EXPORT I2C1_EV_IRQHandler [WEAK]
EXPORT I2C1_ER_IRQHandler [WEAK]
EXPORT I2C2_EV_IRQHandler [WEAK]
EXPORT I2C2_ER_IRQHandler [WEAK]
EXPORT SPI1_IRQHandler [WEAK]
EXPORT SPI2_IRQHandler [WEAK]
EXPORT USART1_IRQHandler [WEAK]
EXPORT USART2_IRQHandler [WEAK]
EXPORT USART3_IRQHandler [WEAK]
EXPORT EXTI15_10_IRQHandler [WEAK]
EXPORT RTCAlarm_IRQHandler [WEAK]
EXPORT USBWakeUp_IRQHandler [WEAK]
WWDG_IRQHandler
PVD_IRQHandler
TAMPER_IRQHandler
RTC_IRQHandler
FLASH_IRQHandler
RCC_IRQHandler
EXTI0_IRQHandler
EXTI1_IRQHandler
EXTI2_IRQHandler
EXTI3_IRQHandler
EXTI4_IRQHandler
DMA1_Channel1_IRQHandler
DMA1_Channel2_IRQHandler
DMA1_Channel3_IRQHandler
DMA1_Channel4_IRQHandler
DMA1_Channel5_IRQHandler
DMA1_Channel6_IRQHandler
DMA1_Channel7_IRQHandler
ADC1_2_IRQHandler
USB_HP_CAN1_TX_IRQHandler
USB_LP_CAN1_RX0_IRQHandler
CAN1_RX1_IRQHandler
CAN1_SCE_IRQHandler
EXTI9_5_IRQHandler
TIM1_BRK_IRQHandler
TIM1_UP_IRQHandler
TIM1_TRG_COM_IRQHandler
TIM1_CC_IRQHandler
TIM2_IRQHandler
TIM3_IRQHandler
TIM4_IRQHandler
I2C1_EV_IRQHandler
I2C1_ER_IRQHandler
I2C2_EV_IRQHandler
I2C2_ER_IRQHandler
SPI1_IRQHandler
SPI2_IRQHandler
USART1_IRQHandler
USART2_IRQHandler
USART3_IRQHandler
EXTI15_10_IRQHandler
RTCAlarm_IRQHandler
USBWakeUp_IRQHandler
B .
ENDP
ALIGN
;*******************************************************************************
; User Stack and Heap initialization
;*******************************************************************************
IF :DEF:__MICROLIB
EXPORT __initial_sp
EXPORT __heap_base
EXPORT __heap_limit
ELSE
IMPORT __use_two_region_memory
EXPORT __user_initial_stackheap
__user_initial_stackheap
LDR R0, = Heap_Mem
LDR R1, =(Stack_Mem + Stack_Size)
LDR R2, = (Heap_Mem + Heap_Size)
LDR R3, = Stack_Mem
BX LR
ALIGN
ENDIF
END
;******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE*****

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,345 @@
/**
* Bibliotheque DriverJeuLaser (ancienne gassp72 adaptée 2021 - TR)
*
* GPIO - ADC - Sequenceur - System Timer - PWM - 72 MHz
* Modifs :
* enlèvement de tout ce qui est inutile dans le .h
* ajout de fonctions GPIO dans le .c pour utilisation en ASM ou en C :
* - GPIOA_Set(char Broche), GPIOB_Set(char Broche), GPIOC_Set(char Broche)
* - GPIOA_Clear(char Broche), GPIOB_Clear(char Broche), GPIOC_Clear(char Broche)
*
* ajout d'une fonction qui impose une valeur de PWM (TIM3_CCR3)
* PWM_Set_Value_On_TIM3_C3( int Val)
* permet en ASM ou en C de fixer la valeur de PWM
* Ajout de commentaires
*/
#ifndef DRIVERJEULASER_H__
#define DRIVERJEULASER_H__
#include "stm32f10x.h"
//**********************************************************************************************************
//--------------------- CONFIGURATION CLOCK DU STM32 --------------------------------------
//**********************************************************************************************************
/**
* @brief Configure l'ensemble des horloges du uC
* @note horloge systeme (config statique a 72 MHz pour le STM32F103)
* @param None
* @retval None
*/
void CLOCK_Configure(void);
//**********************************************************************************************************
//--------------------- LES TIMERS GENERAL PURPOSE TIM1 à TIM 4 ------------------------------
//**********************************************************************************************************
/**
* @brief Configure un Timer TIM1 à TIM4 avec une périodicité donnée
* @note L' horloge des 4 timers a une fréquence de 72MHz
* @param *Timer = TIM1 ou TIM2 ou TIM3 ou TIM4
* @param Durée_ticks : nombre de pas (tick) comptés à 72 MHz pour faire déborder le timer
* La période de débordement du Timer est donc T = Durée_ticks * Tck, avec Tck = 1/72 000 000
* @retval None
*/
void Timer_1234_Init_ff( TIM_TypeDef *Timer, u32 Duree_ticks );
/**
* Macros de base pour utiliser les timers
*/
// bloque le timer
#define Bloque_Timer(Timer) Timer->CR1=(Timer->CR1)&~(1<<0)
// Lance timer
#define Run_Timer(Timer) Timer->CR1=(Timer->CR1)|(1<<0)
/**
* @brief Associe une fonction d'interruption (callback) lors du débordement d'un timer
* @note
* @param *Timer = TIM1 ou TIM2 ou TIM3 ou TIM4
* @param Prio : niveau de priorité de l'interruption (0 -> priorité max, 15 -> priorité min)
* @param IT_function : le nom de la fonction Callback à appeler lors de l'interruption
* @retval None
*/
void Active_IT_Debordement_Timer( TIM_TypeDef *Timer, char Prio, void (*IT_function)(void) );
//*********************************************************************************************************
//--------------------- PWM TIM1 to TIM 4 ------------------------------
//*********************************************************************************************************
/**
* @brief Configure un timer en PWM
* @note
* @param *Timer = TIM1 ou TIM2 ou TIM3 ou TIM4
* @param voie : un des 4 canaux possibles 1 à 4.
* @param Periode_ticks : nombre de pas (tick) comptés à 72 MHz pour faire déborder le timer
* La période de débordement du Timer est donc T = Durée_ticks * Tck, avec Tck = 1/72 000 000
* @retval Retourne la période en tick (normalement la même que le param d'entrée sauf si PSC utilisé
*/
unsigned short int PWM_Init_ff( TIM_TypeDef *Timer, char Voie, u32 Periode_ticks );
/**
* @brief Fixe une valeur de PWM, Val, en tick horloge. La rapport cyclique effectif
* est donc : rcy = Thaut_ticks / Periode_ticks
* @note spécifique Jeu Laser, PWM liée exclusivement au TIM3, chan3
* @param Thaut_ticks : durée de l'état haut d'une impulsion en Ticks
* @retval None
*/
void PWM_Set_Value_TIM3_Ch3( unsigned short int Thaut_ticks);
//**********************************************************************************************************
//--------------------- LE SYSTICK TIMER, Part of Cortex M3 ------------------------------
//**********************************************************************************************************
/**
* @brief Configure le timer Systick avec une périodicité donnée
* @note Ce timer ne peut servir qu'à créer des temporisations ou générer des interruption
* ce n'est pas à proprement parler un périphérique, il fait partie du Cortex M3
* Ce timer est un 24 bits
* @param Periode_ticks : nombre de pas (tick) comptés à 72 MHz pour établir la périodicité
* La période de débordement du Timer est donc T = Durée_ticks * Tck, avec Tck = 1/72 000 000
* @retval None
*/
void Systick_Period_ff( unsigned int Periode_ticks );
/**
* @brief Associe une fonction d'interruption (callback) lors du débordement du Systick
* @note
* @param Prio : niveau de priorité de l'interruption (0 -> priorité max, 15 -> priorité min)
* @param IT_function : le nom de la fonction Callback à appeler lors de l'interruption
* @retval None
*/
void Systick_Prio_IT( char Prio, void (*Systick_function)(void) );
/**
* Macros de base pour utiliser le Systick
*/
#define SysTick_On ((SysTick->CTRL)=(SysTick->CTRL)|1<<0)
#define SysTick_Off ((SysTick->CTRL)=(SysTick->CTRL)& ~(1<<0))
#define SysTick_Enable_IT ((SysTick->CTRL)=(SysTick->CTRL)|1<<1)
#define SysTick_Disable_IT ((SysTick->CTRL)=(SysTick->CTRL)& ~(1<<1))
//**********************************************************************************************************
//--------------------- LE SYSTICK TIMER, Part of Cortex M3 ------------------------------
//**********************************************************************************************************
/**
* @brief Active l'ADC du STM32, configure la durée de prélèvement de l'échantillon (temps
* de fermeture du switch d'acquisition
* @note
* @param ADC : précise de quel ADC il s'agit, ADC1 ou ADC2
* @param Duree_Ech_ticks : dirée de fermeture du switch d'échantillonnage en Tick d'horloge CPU
* exemple pour 1µs on choisira 72.
* @retval Nombre de Tick réellement pris en compte
*/
unsigned int Init_TimingADC_ActiveADC_ff( ADC_TypeDef * ADC, u32 Duree_Ech_ticks );
/**
* @brief Sélectionne la voie à convertir
* @note Attention, la voie va de 0 à 15 et n'est pas directement lié au n°de GPIO
* @param ADC : précise de quel ADC il s'agit, ADC1 ou ADC2
* @param Voie_ADC : 1 à 15
* @retval None
*/
void Single_Channel_ADC( ADC_TypeDef * ADC, char Voie_ADC );
/**
* @brief Permet lier le déclenchement au débordement d'un timer, spécifie également
* la période de débordement du timer
* @note pas besoin de régler le timer avec une autre fonction dédiée timer
* @param ADC : précise de quel ADC il s'agit, ADC1 ou ADC2
* @param Source : indique le timer qui déclenche l'ADC choix dans les define ci-dessous
* @param Periode_ticks : nombre de pas (tick) comptés à 72 MHz pour faire déborder le timer
* La période de débordement du Timer est donc T = Durée_ticks * Tck, avec Tck = 1/72 000 000
* @retval None
*/
// param pour Source :
#define TIM1_CC1 0
#define TIM1_CC2 1
#define TIM1_CC3 2
#define TIM2_CC2 3
#define TIM4_CC4 5
void Init_Conversion_On_Trig_Timer_ff( ADC_TypeDef * ADC, char Source, u32 Periode_ticks );
//**********************************************************************************************************
//--------------------- ANALOG INPUT ADC & DMA ------------------------------
//**********************************************************************************************************
/**
* @brief Permer de lier l'ADC à un tableau en RAM pour une DMA
* @note
* @param Circ : circular. Si '0', en fin de DMA le ptr d'@ reste inchangé
* si '1' le ptr d'@ se recale à celle du début.
* @param Ptr_Table_DMA : contient l'@ de début de zone RAM à écrire
* @retval None
*/
void Init_ADC1_DMA1(char Circ, short int *Ptr_Table_DMA);
/**
* @brief Lance une DMA sur le nombre de points spécifie. Les resultats seront stockes
* dans la zone de RAM écrite est indiquée lors de l'appel de la fonction Init_ADC1_DMA1
* @note
* @param NbEchDMA est le nombre d'échantillons à stocker.
* @retval None
*/
void Start_DMA1( u16 NbEchDMA );
// arret DMA
#define Stop_DMA1 DMA1_Channel1->CCR =(DMA1_Channel1->CCR) &~0x1;
/**
* @brief Attend la fin d'un cycle de DMA. la duree depend de la periode d'acquisition
* et du nombre d'echantillons
* @note fonction d'attente (bloquante)
* @param None
* @retval None
*/
void Wait_On_End_Of_DMA1(void);
//**********************************************************************************************************
//--------------------- GPIO ------------------------------
//**********************************************************************************************************
/**
* @brief Initialisation d'un GPIO (A à C), pin x.
* peut être configuré :
* -> Input ou output
* -> architecture technologique (push-pull, open drain...)
* @note
* @param Port : GPIOA, GPIOB, GPIOC
* @param Broche : 0 à 15
* @param Sens : INPUT ou OUTPUT
* @param Techno : voir define ci dessous
* @retval 1 erreur, 0 si OK
*/
// Sens
#define INPUT 'i'
#define OUTPUT 'o'
// Techno pour pin en entrée (INPUT)
#define ANALOG 0
#define INPUT_FLOATING 1
#define INPUT_PULL_DOWN_UP 2
// Techno pour pin en sortie (OUTPUT)
#define OUTPUT_PPULL 0
#define OUTPUT_OPDRAIN 1
#define ALT_PPULL 2
#define ALT_OPDRAIN 3
// Exemple :
// Port_IO_Init(GPIOB, 8, OUTPUT, OUTPUT_PPULL);
// Place le bit 8 du port B en sortie Push-pull
char GPIO_Configure(GPIO_TypeDef * Port, int Broche, int Sens, int Techno);
/**
* @brief Mise à 1 d'une broche GPIO
* @note Une fonction par GPIO
* @param Broche : 0 à 15
* @retval None
*/
void GPIOA_Set(char Broche);
void GPIOB_Set(char Broche);
void GPIOC_Set(char Broche);
/**
* @brief Mise à 0 d'une broche GPIO
* @note Une fonction par GPIO
* @param Broche : 0 à 15
* @retval None
*/
void GPIOA_Clear(char Broche);
void GPIOB_Clear(char Broche);
void GPIOC_Clear(char Broche);
#endif

View file

@ -0,0 +1,56 @@
; Bibliotheque DriverJeuLaser (ancienne gassp72 adaptée 2021 - TR)
; Accès en aux fonctions suivantes :
; GPIO :
; GPIOA_Set(char Broche), GPIOB_Set(char Broche), GPIOC_Set(char Broche)
; GPIOA_Clear(char Broche), GPIOB_Clear(char Broche), GPIOC_Clear(char Broche)
; PWM :
;/**
; * @brief Fixe une valeur de PWM, Val, en tick horloge. La rapport cyclique effectif
; * est donc : rcy = Thaut_ticks / Periode_ticks
; * @note spécifique Jeu Laser, PWM liée exclusivement au TIM3, chan3
; * @param Thaut_ticks : durée de l'état haut d'une impulsion en Ticks
; * @retval None
; */
;void PWM_Set_Value_TIM3_Ch3( unsigned short int Thaut_ticks);
import PWM_Set_Value_TIM3_Ch3
;/**
; * @brief Mise à 1 d'une broche GPIO
; * @note Une fonction par GPIO
; * @param Broche : 0 à 15
; * @retval None
; */
;void GPIOA_Set(char Broche);
import GPIOA_Set
;void GPIOB_Set(char Broche);
import GPIOB_Set
;void GPIOC_Set(char Broche);
import GPIOC_Set
;/**
; * @brief Mise à 0 d'une broche GPIO
; * @note Une fonction par GPIO
; * @param Broche : 0 à 15
; * @retval None
; */
;void GPIOA_Clear(char Broche);
import GPIOA_Clear
;void GPIOB_Clear(char Broche);
import GPIOB_Clear
;void GPIOC_Clear(char Broche);
import GPIOC_Clear
end

View file

@ -0,0 +1,84 @@
PRESERVE8
THUMB
INCLUDE DriverJeuLaser.inc
EXPORT timer_callback
; ====================== zone de réservation de données, ======================================
;Section RAM (read only) :
area mesdata,data,readonly
;Section RAM (read write):
area maram,data,readwrite
FlagCligno dcd 0
; ===============================================================================================
;Section ROM code (read only) :
area moncode,code,readonly
; void timer_callback(void)
;{
; if (FlagCligno==1)
; {
; FlagCligno=0;
; GPIOB_Set(1);
; }
; else
; {
; FlagCligno=1;
; GPIOB_Clear(1);
; }
;}
timer_callback proc
;{
push{lr}
; if (FlagCligno==1)
ldr r1, =FlagCligno
ldr r2, [r1]
mov r0, #1
cmp r0,r2
bne JsuisElse
; {
; FlagCligno=0;
mov r0,#0
str r0, [r1]
; GPIOB_Set(1);
mov r0, #1
bl GPIOB_Set
bl JsuisFin
; }
; else
JsuisElse
; {
; FlagCligno=1;
mov r0,#1
str r0, [r1]
; GPIOB_Clear(1);
bl GPIOB_Clear
; }
JsuisFin
pop {pc}
;}
endp
END

View file

@ -0,0 +1,46 @@
#include "DriverJeuLaser.h"
extern void timer_callback(void);
int main(void)
{
// ===========================================================================
// ============= INIT PERIPH (faites qu'une seule fois) =====================
// ===========================================================================
// Après exécution : le coeur CPU est clocké à 72MHz ainsi que tous les timers
CLOCK_Configure();
// configuration du Timer 4 en débordement 100ms
Timer_1234_Init_ff( TIM4, 7200000);
// Activation des interruptions issues du Timer 4
// Association de la fonction à exécuter lors de l'interruption : timer_callback
// cette fonction (si écrite en ASM) doit être conforme à l'AAPCS
//** Placez votre code là ** //
Active_IT_Debordement_Timer( TIM4, 2, timer_callback );
// configuration de PortB.1 (PB1) en sortie push-pull
GPIO_Configure(GPIOB, 1, OUTPUT, OUTPUT_PPULL);
//============================================================================
while (1)
{
}
}

View file

@ -0,0 +1,335 @@
;******************** (C) COPYRIGHT 2011 STMicroelectronics ********************
;* File Name : startup_stm32f10x_md.s
;* Author : MCD Application Team
;* Version : V3.5.0
;* Date : 11-March-2011
;* Description : STM32F10x Medium Density Devices vector table for MDK-ARM
;* toolchain.
;* This module performs:
;* - Set the initial SP
;* - Set the initial PC == Reset_Handler
;* - Set the vector table entries with the exceptions ISR address
;* - Configure the clock system
;* - Branches to __main in the C library (which eventually
;* calls main()).
;* After Reset the CortexM3 processor is in Thread mode,
;* priority is Privileged, and the Stack is set to Main.
;* <<< Use Configuration Wizard in Context Menu >>>
;*******************************************************************************
; THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
; WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME.
; AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY DIRECT,
; INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM THE
; CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE CODING
; INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
;*******************************************************************************
; Amount of memory (in bytes) allocated for Stack
; Tailor this value to your application needs
; <h> Stack Configuration
; <o> Stack Size (in Bytes) <0x0-0xFFFFFFFF:8>
; </h>
Stack_Size EQU 0x00000400
AREA STACK, NOINIT, READWRITE, ALIGN=3
Stack_Mem SPACE Stack_Size
__initial_sp
; <h> Heap Configuration
; <o> Heap Size (in Bytes) <0x0-0xFFFFFFFF:8>
; </h>
Heap_Size EQU 0x00000200
AREA HEAP, NOINIT, READWRITE, ALIGN=3
__heap_base
Heap_Mem SPACE Heap_Size
__heap_limit
PRESERVE8
THUMB
; Vector Table Mapped to Address 0 at Reset
AREA RESET, DATA, READONLY
EXPORT __Vectors
EXPORT __Vectors_End
EXPORT __Vectors_Size
__Vectors DCD __initial_sp ; Top of Stack
DCD Reset_Handler ; Reset Handler
DCD NMI_Handler ; NMI Handler
DCD HardFault_Handler ; Hard Fault Handler
DCD MemManage_Handler ; MPU Fault Handler
DCD BusFault_Handler ; Bus Fault Handler
DCD UsageFault_Handler ; Usage Fault Handler
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD SVC_Handler ; SVCall Handler
DCD DebugMon_Handler ; Debug Monitor Handler
DCD 0 ; Reserved
DCD PendSV_Handler ; PendSV Handler
DCD SysTick_Handler ; SysTick Handler
; External Interrupts
DCD WWDG_IRQHandler ; Window Watchdog
DCD PVD_IRQHandler ; PVD through EXTI Line detect
DCD TAMPER_IRQHandler ; Tamper
DCD RTC_IRQHandler ; RTC
DCD FLASH_IRQHandler ; Flash
DCD RCC_IRQHandler ; RCC
DCD EXTI0_IRQHandler ; EXTI Line 0
DCD EXTI1_IRQHandler ; EXTI Line 1
DCD EXTI2_IRQHandler ; EXTI Line 2
DCD EXTI3_IRQHandler ; EXTI Line 3
DCD EXTI4_IRQHandler ; EXTI Line 4
DCD DMA1_Channel1_IRQHandler ; DMA1 Channel 1
DCD DMA1_Channel2_IRQHandler ; DMA1 Channel 2
DCD DMA1_Channel3_IRQHandler ; DMA1 Channel 3
DCD DMA1_Channel4_IRQHandler ; DMA1 Channel 4
DCD DMA1_Channel5_IRQHandler ; DMA1 Channel 5
DCD DMA1_Channel6_IRQHandler ; DMA1 Channel 6
DCD DMA1_Channel7_IRQHandler ; DMA1 Channel 7
DCD ADC1_2_IRQHandler ; ADC1_2
DCD USB_HP_CAN1_TX_IRQHandler ; USB High Priority or CAN1 TX
DCD USB_LP_CAN1_RX0_IRQHandler ; USB Low Priority or CAN1 RX0
DCD CAN1_RX1_IRQHandler ; CAN1 RX1
DCD CAN1_SCE_IRQHandler ; CAN1 SCE
DCD EXTI9_5_IRQHandler ; EXTI Line 9..5
DCD TIM1_BRK_IRQHandler ; TIM1 Break
DCD TIM1_UP_IRQHandler ; TIM1 Update
DCD TIM1_TRG_COM_IRQHandler ; TIM1 Trigger and Commutation
DCD TIM1_CC_IRQHandler ; TIM1 Capture Compare
DCD TIM2_IRQHandler ; TIM2
DCD TIM3_IRQHandler ; TIM3
DCD TIM4_IRQHandler ; TIM4
DCD I2C1_EV_IRQHandler ; I2C1 Event
DCD I2C1_ER_IRQHandler ; I2C1 Error
DCD I2C2_EV_IRQHandler ; I2C2 Event
DCD I2C2_ER_IRQHandler ; I2C2 Error
DCD SPI1_IRQHandler ; SPI1
DCD SPI2_IRQHandler ; SPI2
DCD USART1_IRQHandler ; USART1
DCD USART2_IRQHandler ; USART2
DCD USART3_IRQHandler ; USART3
DCD EXTI15_10_IRQHandler ; EXTI Line 15..10
DCD RTCAlarm_IRQHandler ; RTC Alarm through EXTI Line
DCD USBWakeUp_IRQHandler ; USB Wakeup from suspend
__Vectors_End
__Vectors_Size EQU __Vectors_End - __Vectors
AREA |.text|, CODE, READONLY
; Reset handler
Reset_Handler PROC
EXPORT Reset_Handler [WEAK]
IMPORT __main
LDR R0, =SystemInit
BLX R0
;
; Enable UsageFault, MemFault and Busfault interrupts
;
_SHCSR EQU 0xE000ED24 ; SHCSR is located at address 0xE000ED24
LDR.W R0, =_SHCSR
LDR R1, [R0] ; Read CPACR
ORR R1, R1, #(0x7 << 16) ; Set bits 16,17,18 to enable usagefault, busfault, memfault interrupts
STR R1, [R0] ; Write back the modified value to the CPACR
DSB ; Wait for store to complete
;
; Set priority grouping (PRIGROUP) in AIRCR to 3 (16 levels for group priority and 0 for subpriority)
;
_AIRCR EQU 0xE000ED0C
_AIRCR_VAL EQU 0x05FA0300
LDR.W R0, =_AIRCR
LDR.W R1, =_AIRCR_VAL
STR R1,[R0]
;
; Finaly, jump to main function (void main (void))
;
LDR R0, =__main
BX R0
ENDP
SystemInit PROC
EXPORT SystemInit [WEAK]
BX LR
ENDP
; Dummy Exception Handlers (infinite loops which can be modified)
NMI_Handler PROC
EXPORT NMI_Handler [WEAK]
B .
ENDP
HardFault_Handler\
PROC
EXPORT HardFault_Handler [WEAK]
B .
ENDP
MemManage_Handler\
PROC
EXPORT MemManage_Handler [WEAK]
B .
ENDP
BusFault_Handler\
PROC
EXPORT BusFault_Handler [WEAK]
B .
ENDP
UsageFault_Handler\
PROC
EXPORT UsageFault_Handler [WEAK]
B .
ENDP
SVC_Handler PROC
EXPORT SVC_Handler [WEAK]
B .
ENDP
DebugMon_Handler\
PROC
EXPORT DebugMon_Handler [WEAK]
B .
ENDP
PendSV_Handler PROC
EXPORT PendSV_Handler [WEAK]
B .
ENDP
SysTick_Handler PROC
EXPORT SysTick_Handler [WEAK]
B .
ENDP
Default_Handler PROC
EXPORT WWDG_IRQHandler [WEAK]
EXPORT PVD_IRQHandler [WEAK]
EXPORT TAMPER_IRQHandler [WEAK]
EXPORT RTC_IRQHandler [WEAK]
EXPORT FLASH_IRQHandler [WEAK]
EXPORT RCC_IRQHandler [WEAK]
EXPORT EXTI0_IRQHandler [WEAK]
EXPORT EXTI1_IRQHandler [WEAK]
EXPORT EXTI2_IRQHandler [WEAK]
EXPORT EXTI3_IRQHandler [WEAK]
EXPORT EXTI4_IRQHandler [WEAK]
EXPORT DMA1_Channel1_IRQHandler [WEAK]
EXPORT DMA1_Channel2_IRQHandler [WEAK]
EXPORT DMA1_Channel3_IRQHandler [WEAK]
EXPORT DMA1_Channel4_IRQHandler [WEAK]
EXPORT DMA1_Channel5_IRQHandler [WEAK]
EXPORT DMA1_Channel6_IRQHandler [WEAK]
EXPORT DMA1_Channel7_IRQHandler [WEAK]
EXPORT ADC1_2_IRQHandler [WEAK]
EXPORT USB_HP_CAN1_TX_IRQHandler [WEAK]
EXPORT USB_LP_CAN1_RX0_IRQHandler [WEAK]
EXPORT CAN1_RX1_IRQHandler [WEAK]
EXPORT CAN1_SCE_IRQHandler [WEAK]
EXPORT EXTI9_5_IRQHandler [WEAK]
EXPORT TIM1_BRK_IRQHandler [WEAK]
EXPORT TIM1_UP_IRQHandler [WEAK]
EXPORT TIM1_TRG_COM_IRQHandler [WEAK]
EXPORT TIM1_CC_IRQHandler [WEAK]
EXPORT TIM2_IRQHandler [WEAK]
EXPORT TIM3_IRQHandler [WEAK]
EXPORT TIM4_IRQHandler [WEAK]
EXPORT I2C1_EV_IRQHandler [WEAK]
EXPORT I2C1_ER_IRQHandler [WEAK]
EXPORT I2C2_EV_IRQHandler [WEAK]
EXPORT I2C2_ER_IRQHandler [WEAK]
EXPORT SPI1_IRQHandler [WEAK]
EXPORT SPI2_IRQHandler [WEAK]
EXPORT USART1_IRQHandler [WEAK]
EXPORT USART2_IRQHandler [WEAK]
EXPORT USART3_IRQHandler [WEAK]
EXPORT EXTI15_10_IRQHandler [WEAK]
EXPORT RTCAlarm_IRQHandler [WEAK]
EXPORT USBWakeUp_IRQHandler [WEAK]
WWDG_IRQHandler
PVD_IRQHandler
TAMPER_IRQHandler
RTC_IRQHandler
FLASH_IRQHandler
RCC_IRQHandler
EXTI0_IRQHandler
EXTI1_IRQHandler
EXTI2_IRQHandler
EXTI3_IRQHandler
EXTI4_IRQHandler
DMA1_Channel1_IRQHandler
DMA1_Channel2_IRQHandler
DMA1_Channel3_IRQHandler
DMA1_Channel4_IRQHandler
DMA1_Channel5_IRQHandler
DMA1_Channel6_IRQHandler
DMA1_Channel7_IRQHandler
ADC1_2_IRQHandler
USB_HP_CAN1_TX_IRQHandler
USB_LP_CAN1_RX0_IRQHandler
CAN1_RX1_IRQHandler
CAN1_SCE_IRQHandler
EXTI9_5_IRQHandler
TIM1_BRK_IRQHandler
TIM1_UP_IRQHandler
TIM1_TRG_COM_IRQHandler
TIM1_CC_IRQHandler
TIM2_IRQHandler
TIM3_IRQHandler
TIM4_IRQHandler
I2C1_EV_IRQHandler
I2C1_ER_IRQHandler
I2C2_EV_IRQHandler
I2C2_ER_IRQHandler
SPI1_IRQHandler
SPI2_IRQHandler
USART1_IRQHandler
USART2_IRQHandler
USART3_IRQHandler
EXTI15_10_IRQHandler
RTCAlarm_IRQHandler
USBWakeUp_IRQHandler
B .
ENDP
ALIGN
;*******************************************************************************
; User Stack and Heap initialization
;*******************************************************************************
IF :DEF:__MICROLIB
EXPORT __initial_sp
EXPORT __heap_base
EXPORT __heap_limit
ELSE
IMPORT __use_two_region_memory
EXPORT __user_initial_stackheap
__user_initial_stackheap
LDR R0, = Heap_Mem
LDR R1, =(Stack_Mem + Stack_Size)
LDR R2, = (Heap_Mem + Heap_Size)
LDR R3, = Stack_Mem
BX LR
ALIGN
ENDIF
END
;******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE*****

View file

@ -0,0 +1,345 @@
/**
* Bibliotheque DriverJeuLaser (ancienne gassp72 adaptée 2021 - TR)
*
* GPIO - ADC - Sequenceur - System Timer - PWM - 72 MHz
* Modifs :
* enlèvement de tout ce qui est inutile dans le .h
* ajout de fonctions GPIO dans le .c pour utilisation en ASM ou en C :
* - GPIOA_Set(char Broche), GPIOB_Set(char Broche), GPIOC_Set(char Broche)
* - GPIOA_Clear(char Broche), GPIOB_Clear(char Broche), GPIOC_Clear(char Broche)
*
* ajout d'une fonction qui impose une valeur de PWM (TIM3_CCR3)
* PWM_Set_Value_On_TIM3_C3( int Val)
* permet en ASM ou en C de fixer la valeur de PWM
* Ajout de commentaires
*/
#ifndef DRIVERJEULASER_H__
#define DRIVERJEULASER_H__
#include "stm32f10x.h"
//**********************************************************************************************************
//--------------------- CONFIGURATION CLOCK DU STM32 --------------------------------------
//**********************************************************************************************************
/**
* @brief Configure l'ensemble des horloges du uC
* @note horloge systeme (config statique a 72 MHz pour le STM32F103)
* @param None
* @retval None
*/
void CLOCK_Configure(void);
//**********************************************************************************************************
//--------------------- LES TIMERS GENERAL PURPOSE TIM1 à TIM 4 ------------------------------
//**********************************************************************************************************
/**
* @brief Configure un Timer TIM1 à TIM4 avec une périodicité donnée
* @note L' horloge des 4 timers a une fréquence de 72MHz
* @param *Timer = TIM1 ou TIM2 ou TIM3 ou TIM4
* @param Durée_ticks : nombre de pas (tick) comptés à 72 MHz pour faire déborder le timer
* La période de débordement du Timer est donc T = Durée_ticks * Tck, avec Tck = 1/72 000 000
* @retval None
*/
void Timer_1234_Init_ff( TIM_TypeDef *Timer, u32 Duree_ticks );
/**
* Macros de base pour utiliser les timers
*/
// bloque le timer
#define Bloque_Timer(Timer) Timer->CR1=(Timer->CR1)&~(1<<0)
// Lance timer
#define Run_Timer(Timer) Timer->CR1=(Timer->CR1)|(1<<0)
/**
* @brief Associe une fonction d'interruption (callback) lors du débordement d'un timer
* @note
* @param *Timer = TIM1 ou TIM2 ou TIM3 ou TIM4
* @param Prio : niveau de priorité de l'interruption (0 -> priorité max, 15 -> priorité min)
* @param IT_function : le nom de la fonction Callback à appeler lors de l'interruption
* @retval None
*/
void Active_IT_Debordement_Timer( TIM_TypeDef *Timer, char Prio, void (*IT_function)(void) );
//*********************************************************************************************************
//--------------------- PWM TIM1 to TIM 4 ------------------------------
//*********************************************************************************************************
/**
* @brief Configure un timer en PWM
* @note
* @param *Timer = TIM1 ou TIM2 ou TIM3 ou TIM4
* @param voie : un des 4 canaux possibles 1 à 4.
* @param Periode_ticks : nombre de pas (tick) comptés à 72 MHz pour faire déborder le timer
* La période de débordement du Timer est donc T = Durée_ticks * Tck, avec Tck = 1/72 000 000
* @retval Retourne la période en tick (normalement la même que le param d'entrée sauf si PSC utilisé
*/
unsigned short int PWM_Init_ff( TIM_TypeDef *Timer, char Voie, u32 Periode_ticks );
/**
* @brief Fixe une valeur de PWM, Val, en tick horloge. La rapport cyclique effectif
* est donc : rcy = Thaut_ticks / Periode_ticks
* @note spécifique Jeu Laser, PWM liée exclusivement au TIM3, chan3
* @param Thaut_ticks : durée de l'état haut d'une impulsion en Ticks
* @retval None
*/
void PWM_Set_Value_TIM3_Ch3( unsigned short int Thaut_ticks);
//**********************************************************************************************************
//--------------------- LE SYSTICK TIMER, Part of Cortex M3 ------------------------------
//**********************************************************************************************************
/**
* @brief Configure le timer Systick avec une périodicité donnée
* @note Ce timer ne peut servir qu'à créer des temporisations ou générer des interruption
* ce n'est pas à proprement parler un périphérique, il fait partie du Cortex M3
* Ce timer est un 24 bits
* @param Periode_ticks : nombre de pas (tick) comptés à 72 MHz pour établir la périodicité
* La période de débordement du Timer est donc T = Durée_ticks * Tck, avec Tck = 1/72 000 000
* @retval None
*/
void Systick_Period_ff( unsigned int Periode_ticks );
/**
* @brief Associe une fonction d'interruption (callback) lors du débordement du Systick
* @note
* @param Prio : niveau de priorité de l'interruption (0 -> priorité max, 15 -> priorité min)
* @param IT_function : le nom de la fonction Callback à appeler lors de l'interruption
* @retval None
*/
void Systick_Prio_IT( char Prio, void (*Systick_function)(void) );
/**
* Macros de base pour utiliser le Systick
*/
#define SysTick_On ((SysTick->CTRL)=(SysTick->CTRL)|1<<0)
#define SysTick_Off ((SysTick->CTRL)=(SysTick->CTRL)& ~(1<<0))
#define SysTick_Enable_IT ((SysTick->CTRL)=(SysTick->CTRL)|1<<1)
#define SysTick_Disable_IT ((SysTick->CTRL)=(SysTick->CTRL)& ~(1<<1))
//**********************************************************************************************************
//--------------------- LE SYSTICK TIMER, Part of Cortex M3 ------------------------------
//**********************************************************************************************************
/**
* @brief Active l'ADC du STM32, configure la durée de prélèvement de l'échantillon (temps
* de fermeture du switch d'acquisition
* @note
* @param ADC : précise de quel ADC il s'agit, ADC1 ou ADC2
* @param Duree_Ech_ticks : dirée de fermeture du switch d'échantillonnage en Tick d'horloge CPU
* exemple pour 1µs on choisira 72.
* @retval Nombre de Tick réellement pris en compte
*/
unsigned int Init_TimingADC_ActiveADC_ff( ADC_TypeDef * ADC, u32 Duree_Ech_ticks );
/**
* @brief Sélectionne la voie à convertir
* @note Attention, la voie va de 0 à 15 et n'est pas directement lié au n°de GPIO
* @param ADC : précise de quel ADC il s'agit, ADC1 ou ADC2
* @param Voie_ADC : 1 à 15
* @retval None
*/
void Single_Channel_ADC( ADC_TypeDef * ADC, char Voie_ADC );
/**
* @brief Permet lier le déclenchement au débordement d'un timer, spécifie également
* la période de débordement du timer
* @note pas besoin de régler le timer avec une autre fonction dédiée timer
* @param ADC : précise de quel ADC il s'agit, ADC1 ou ADC2
* @param Source : indique le timer qui déclenche l'ADC choix dans les define ci-dessous
* @param Periode_ticks : nombre de pas (tick) comptés à 72 MHz pour faire déborder le timer
* La période de débordement du Timer est donc T = Durée_ticks * Tck, avec Tck = 1/72 000 000
* @retval None
*/
// param pour Source :
#define TIM1_CC1 0
#define TIM1_CC2 1
#define TIM1_CC3 2
#define TIM2_CC2 3
#define TIM4_CC4 5
void Init_Conversion_On_Trig_Timer_ff( ADC_TypeDef * ADC, char Source, u32 Periode_ticks );
//**********************************************************************************************************
//--------------------- ANALOG INPUT ADC & DMA ------------------------------
//**********************************************************************************************************
/**
* @brief Permer de lier l'ADC à un tableau en RAM pour une DMA
* @note
* @param Circ : circular. Si '0', en fin de DMA le ptr d'@ reste inchangé
* si '1' le ptr d'@ se recale à celle du début.
* @param Ptr_Table_DMA : contient l'@ de début de zone RAM à écrire
* @retval None
*/
void Init_ADC1_DMA1(char Circ, short int *Ptr_Table_DMA);
/**
* @brief Lance une DMA sur le nombre de points spécifie. Les resultats seront stockes
* dans la zone de RAM écrite est indiquée lors de l'appel de la fonction Init_ADC1_DMA1
* @note
* @param NbEchDMA est le nombre d'échantillons à stocker.
* @retval None
*/
void Start_DMA1( u16 NbEchDMA );
// arret DMA
#define Stop_DMA1 DMA1_Channel1->CCR =(DMA1_Channel1->CCR) &~0x1;
/**
* @brief Attend la fin d'un cycle de DMA. la duree depend de la periode d'acquisition
* et du nombre d'echantillons
* @note fonction d'attente (bloquante)
* @param None
* @retval None
*/
void Wait_On_End_Of_DMA1(void);
//**********************************************************************************************************
//--------------------- GPIO ------------------------------
//**********************************************************************************************************
/**
* @brief Initialisation d'un GPIO (A à C), pin x.
* peut être configuré :
* -> Input ou output
* -> architecture technologique (push-pull, open drain...)
* @note
* @param Port : GPIOA, GPIOB, GPIOC
* @param Broche : 0 à 15
* @param Sens : INPUT ou OUTPUT
* @param Techno : voir define ci dessous
* @retval 1 erreur, 0 si OK
*/
// Sens
#define INPUT 'i'
#define OUTPUT 'o'
// Techno pour pin en entrée (INPUT)
#define ANALOG 0
#define INPUT_FLOATING 1
#define INPUT_PULL_DOWN_UP 2
// Techno pour pin en sortie (OUTPUT)
#define OUTPUT_PPULL 0
#define OUTPUT_OPDRAIN 1
#define ALT_PPULL 2
#define ALT_OPDRAIN 3
// Exemple :
// Port_IO_Init(GPIOB, 8, OUTPUT, OUTPUT_PPULL);
// Place le bit 8 du port B en sortie Push-pull
char GPIO_Configure(GPIO_TypeDef * Port, int Broche, int Sens, int Techno);
/**
* @brief Mise à 1 d'une broche GPIO
* @note Une fonction par GPIO
* @param Broche : 0 à 15
* @retval None
*/
void GPIOA_Set(char Broche);
void GPIOB_Set(char Broche);
void GPIOC_Set(char Broche);
/**
* @brief Mise à 0 d'une broche GPIO
* @note Une fonction par GPIO
* @param Broche : 0 à 15
* @retval None
*/
void GPIOA_Clear(char Broche);
void GPIOB_Clear(char Broche);
void GPIOC_Clear(char Broche);
#endif

View file

@ -0,0 +1,56 @@
; Bibliotheque DriverJeuLaser (ancienne gassp72 adaptée 2021 - TR)
; Accès en aux fonctions suivantes :
; GPIO :
; GPIOA_Set(char Broche), GPIOB_Set(char Broche), GPIOC_Set(char Broche)
; GPIOA_Clear(char Broche), GPIOB_Clear(char Broche), GPIOC_Clear(char Broche)
; PWM :
;/**
; * @brief Fixe une valeur de PWM, Val, en tick horloge. La rapport cyclique effectif
; * est donc : rcy = Thaut_ticks / Periode_ticks
; * @note spécifique Jeu Laser, PWM liée exclusivement au TIM3, chan3
; * @param Thaut_ticks : durée de l'état haut d'une impulsion en Ticks
; * @retval None
; */
;void PWM_Set_Value_TIM3_Ch3( unsigned short int Thaut_ticks);
import PWM_Set_Value_TIM3_Ch3
;/**
; * @brief Mise à 1 d'une broche GPIO
; * @note Une fonction par GPIO
; * @param Broche : 0 à 15
; * @retval None
; */
;void GPIOA_Set(char Broche);
import GPIOA_Set
;void GPIOB_Set(char Broche);
import GPIOB_Set
;void GPIOC_Set(char Broche);
import GPIOC_Set
;/**
; * @brief Mise à 0 d'une broche GPIO
; * @note Une fonction par GPIO
; * @param Broche : 0 à 15
; * @retval None
; */
;void GPIOA_Clear(char Broche);
import GPIOA_Clear
;void GPIOB_Clear(char Broche);
import GPIOB_Clear
;void GPIOC_Clear(char Broche);
import GPIOC_Clear
end

View file

@ -0,0 +1,95 @@
PRESERVE8
THUMB
INCLUDE DriverJeuLaser.inc
IMPORT Son
IMPORT LongueurSon
EXPORT callbackSon
EXPORT SortieSon
EXPORT IndiceCourrant
; ====================== zone de réservation de données, ======================================
;Section RAM (read only) :
area mesdata,data,readonly
;Section RAM (read write):
area maram,data,readwrite
SortieSon dcw 0
IndiceCourrant dcd 0
; ===============================================================================================
;Section ROM code (read only) :
area moncode,code,readonly
; écrire le code ici
;void callbackSon (void) {
; if (LongueurSon >= IndiceCourrant) {
; SortieSon = Son[IndiceCourrant];
; SortieSon += 32767;
; SortieSon = SortieSon/(65534/719);
; IndiceCourrant++;
; }
; PWM_Set_Value_TIM3_Ch3(SortieSon);
;}
EXPORT callbackSon
callbackSon proc
push {lr}
push {r4}
push {r5}
ldr r0, =Son
ldr r2, =IndiceCourrant
ldr r1, [r2]
ldr r5, =LongueurSon
ldr r5, [r5]
; if (LongueurSon >= IndiceCourrant) {
cmp r1,r5
bgt RienFaire
; SortieSon = Son[IndiceCourrant];
ldrsh r3, [r0, r1, lsl #1]
; IndiceCourrant++;
add r1, #1
str r1, [r2]
; SortieSon += 32768;
add r3, #32768
; SortieSon = SortieSon*719/65534;
mov r4, #719
mul r3, r4
asr r3, #16
ldr r0, =SortieSon
str r3, [r0] ; valeur de r3 à l'adresse dans r0 = adresse de SortieSon
; }
; PWM_Set_Value_TIM3_Ch3(SortieSon);
mov r0 , r3 ; passage de valeur de SortieSon en arg
bl PWM_Set_Value_TIM3_Ch3
RienFaire
pop {r5}
pop {r4}
pop {pc}
endp
;StartSon proc
; callbackSon();
; bl callbackSon
; endp
END

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,34 @@
#include "DriverJeuLaser.h"
extern void callbackSon(void);
int main(void)
{
// ===========================================================================
// ============= INIT PERIPH (faites qu'une seule fois) =====================
// ===========================================================================
// Après exécution : le coeur CPU est clocké à 72MHz ainsi que tous les timers
CLOCK_Configure();
Timer_1234_Init_ff( TIM4, 6552);
PWM_Init_ff( TIM3, 3, 720);
GPIO_Configure(GPIOB, 0, OUTPUT, ALT_PPULL);
Active_IT_Debordement_Timer( TIM4, 2, callbackSon );
//============================================================================
// StartSon();
while (1)
{
}
}

View file

@ -0,0 +1,335 @@
;******************** (C) COPYRIGHT 2011 STMicroelectronics ********************
;* File Name : startup_stm32f10x_md.s
;* Author : MCD Application Team
;* Version : V3.5.0
;* Date : 11-March-2011
;* Description : STM32F10x Medium Density Devices vector table for MDK-ARM
;* toolchain.
;* This module performs:
;* - Set the initial SP
;* - Set the initial PC == Reset_Handler
;* - Set the vector table entries with the exceptions ISR address
;* - Configure the clock system
;* - Branches to __main in the C library (which eventually
;* calls main()).
;* After Reset the CortexM3 processor is in Thread mode,
;* priority is Privileged, and the Stack is set to Main.
;* <<< Use Configuration Wizard in Context Menu >>>
;*******************************************************************************
; THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
; WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME.
; AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY DIRECT,
; INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM THE
; CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE CODING
; INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
;*******************************************************************************
; Amount of memory (in bytes) allocated for Stack
; Tailor this value to your application needs
; <h> Stack Configuration
; <o> Stack Size (in Bytes) <0x0-0xFFFFFFFF:8>
; </h>
Stack_Size EQU 0x00000400
AREA STACK, NOINIT, READWRITE, ALIGN=3
Stack_Mem SPACE Stack_Size
__initial_sp
; <h> Heap Configuration
; <o> Heap Size (in Bytes) <0x0-0xFFFFFFFF:8>
; </h>
Heap_Size EQU 0x00000200
AREA HEAP, NOINIT, READWRITE, ALIGN=3
__heap_base
Heap_Mem SPACE Heap_Size
__heap_limit
PRESERVE8
THUMB
; Vector Table Mapped to Address 0 at Reset
AREA RESET, DATA, READONLY
EXPORT __Vectors
EXPORT __Vectors_End
EXPORT __Vectors_Size
__Vectors DCD __initial_sp ; Top of Stack
DCD Reset_Handler ; Reset Handler
DCD NMI_Handler ; NMI Handler
DCD HardFault_Handler ; Hard Fault Handler
DCD MemManage_Handler ; MPU Fault Handler
DCD BusFault_Handler ; Bus Fault Handler
DCD UsageFault_Handler ; Usage Fault Handler
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD SVC_Handler ; SVCall Handler
DCD DebugMon_Handler ; Debug Monitor Handler
DCD 0 ; Reserved
DCD PendSV_Handler ; PendSV Handler
DCD SysTick_Handler ; SysTick Handler
; External Interrupts
DCD WWDG_IRQHandler ; Window Watchdog
DCD PVD_IRQHandler ; PVD through EXTI Line detect
DCD TAMPER_IRQHandler ; Tamper
DCD RTC_IRQHandler ; RTC
DCD FLASH_IRQHandler ; Flash
DCD RCC_IRQHandler ; RCC
DCD EXTI0_IRQHandler ; EXTI Line 0
DCD EXTI1_IRQHandler ; EXTI Line 1
DCD EXTI2_IRQHandler ; EXTI Line 2
DCD EXTI3_IRQHandler ; EXTI Line 3
DCD EXTI4_IRQHandler ; EXTI Line 4
DCD DMA1_Channel1_IRQHandler ; DMA1 Channel 1
DCD DMA1_Channel2_IRQHandler ; DMA1 Channel 2
DCD DMA1_Channel3_IRQHandler ; DMA1 Channel 3
DCD DMA1_Channel4_IRQHandler ; DMA1 Channel 4
DCD DMA1_Channel5_IRQHandler ; DMA1 Channel 5
DCD DMA1_Channel6_IRQHandler ; DMA1 Channel 6
DCD DMA1_Channel7_IRQHandler ; DMA1 Channel 7
DCD ADC1_2_IRQHandler ; ADC1_2
DCD USB_HP_CAN1_TX_IRQHandler ; USB High Priority or CAN1 TX
DCD USB_LP_CAN1_RX0_IRQHandler ; USB Low Priority or CAN1 RX0
DCD CAN1_RX1_IRQHandler ; CAN1 RX1
DCD CAN1_SCE_IRQHandler ; CAN1 SCE
DCD EXTI9_5_IRQHandler ; EXTI Line 9..5
DCD TIM1_BRK_IRQHandler ; TIM1 Break
DCD TIM1_UP_IRQHandler ; TIM1 Update
DCD TIM1_TRG_COM_IRQHandler ; TIM1 Trigger and Commutation
DCD TIM1_CC_IRQHandler ; TIM1 Capture Compare
DCD TIM2_IRQHandler ; TIM2
DCD TIM3_IRQHandler ; TIM3
DCD TIM4_IRQHandler ; TIM4
DCD I2C1_EV_IRQHandler ; I2C1 Event
DCD I2C1_ER_IRQHandler ; I2C1 Error
DCD I2C2_EV_IRQHandler ; I2C2 Event
DCD I2C2_ER_IRQHandler ; I2C2 Error
DCD SPI1_IRQHandler ; SPI1
DCD SPI2_IRQHandler ; SPI2
DCD USART1_IRQHandler ; USART1
DCD USART2_IRQHandler ; USART2
DCD USART3_IRQHandler ; USART3
DCD EXTI15_10_IRQHandler ; EXTI Line 15..10
DCD RTCAlarm_IRQHandler ; RTC Alarm through EXTI Line
DCD USBWakeUp_IRQHandler ; USB Wakeup from suspend
__Vectors_End
__Vectors_Size EQU __Vectors_End - __Vectors
AREA |.text|, CODE, READONLY
; Reset handler
Reset_Handler PROC
EXPORT Reset_Handler [WEAK]
IMPORT __main
LDR R0, =SystemInit
BLX R0
;
; Enable UsageFault, MemFault and Busfault interrupts
;
_SHCSR EQU 0xE000ED24 ; SHCSR is located at address 0xE000ED24
LDR.W R0, =_SHCSR
LDR R1, [R0] ; Read CPACR
ORR R1, R1, #(0x7 << 16) ; Set bits 16,17,18 to enable usagefault, busfault, memfault interrupts
STR R1, [R0] ; Write back the modified value to the CPACR
DSB ; Wait for store to complete
;
; Set priority grouping (PRIGROUP) in AIRCR to 3 (16 levels for group priority and 0 for subpriority)
;
_AIRCR EQU 0xE000ED0C
_AIRCR_VAL EQU 0x05FA0300
LDR.W R0, =_AIRCR
LDR.W R1, =_AIRCR_VAL
STR R1,[R0]
;
; Finaly, jump to main function (void main (void))
;
LDR R0, =__main
BX R0
ENDP
SystemInit PROC
EXPORT SystemInit [WEAK]
BX LR
ENDP
; Dummy Exception Handlers (infinite loops which can be modified)
NMI_Handler PROC
EXPORT NMI_Handler [WEAK]
B .
ENDP
HardFault_Handler\
PROC
EXPORT HardFault_Handler [WEAK]
B .
ENDP
MemManage_Handler\
PROC
EXPORT MemManage_Handler [WEAK]
B .
ENDP
BusFault_Handler\
PROC
EXPORT BusFault_Handler [WEAK]
B .
ENDP
UsageFault_Handler\
PROC
EXPORT UsageFault_Handler [WEAK]
B .
ENDP
SVC_Handler PROC
EXPORT SVC_Handler [WEAK]
B .
ENDP
DebugMon_Handler\
PROC
EXPORT DebugMon_Handler [WEAK]
B .
ENDP
PendSV_Handler PROC
EXPORT PendSV_Handler [WEAK]
B .
ENDP
SysTick_Handler PROC
EXPORT SysTick_Handler [WEAK]
B .
ENDP
Default_Handler PROC
EXPORT WWDG_IRQHandler [WEAK]
EXPORT PVD_IRQHandler [WEAK]
EXPORT TAMPER_IRQHandler [WEAK]
EXPORT RTC_IRQHandler [WEAK]
EXPORT FLASH_IRQHandler [WEAK]
EXPORT RCC_IRQHandler [WEAK]
EXPORT EXTI0_IRQHandler [WEAK]
EXPORT EXTI1_IRQHandler [WEAK]
EXPORT EXTI2_IRQHandler [WEAK]
EXPORT EXTI3_IRQHandler [WEAK]
EXPORT EXTI4_IRQHandler [WEAK]
EXPORT DMA1_Channel1_IRQHandler [WEAK]
EXPORT DMA1_Channel2_IRQHandler [WEAK]
EXPORT DMA1_Channel3_IRQHandler [WEAK]
EXPORT DMA1_Channel4_IRQHandler [WEAK]
EXPORT DMA1_Channel5_IRQHandler [WEAK]
EXPORT DMA1_Channel6_IRQHandler [WEAK]
EXPORT DMA1_Channel7_IRQHandler [WEAK]
EXPORT ADC1_2_IRQHandler [WEAK]
EXPORT USB_HP_CAN1_TX_IRQHandler [WEAK]
EXPORT USB_LP_CAN1_RX0_IRQHandler [WEAK]
EXPORT CAN1_RX1_IRQHandler [WEAK]
EXPORT CAN1_SCE_IRQHandler [WEAK]
EXPORT EXTI9_5_IRQHandler [WEAK]
EXPORT TIM1_BRK_IRQHandler [WEAK]
EXPORT TIM1_UP_IRQHandler [WEAK]
EXPORT TIM1_TRG_COM_IRQHandler [WEAK]
EXPORT TIM1_CC_IRQHandler [WEAK]
EXPORT TIM2_IRQHandler [WEAK]
EXPORT TIM3_IRQHandler [WEAK]
EXPORT TIM4_IRQHandler [WEAK]
EXPORT I2C1_EV_IRQHandler [WEAK]
EXPORT I2C1_ER_IRQHandler [WEAK]
EXPORT I2C2_EV_IRQHandler [WEAK]
EXPORT I2C2_ER_IRQHandler [WEAK]
EXPORT SPI1_IRQHandler [WEAK]
EXPORT SPI2_IRQHandler [WEAK]
EXPORT USART1_IRQHandler [WEAK]
EXPORT USART2_IRQHandler [WEAK]
EXPORT USART3_IRQHandler [WEAK]
EXPORT EXTI15_10_IRQHandler [WEAK]
EXPORT RTCAlarm_IRQHandler [WEAK]
EXPORT USBWakeUp_IRQHandler [WEAK]
WWDG_IRQHandler
PVD_IRQHandler
TAMPER_IRQHandler
RTC_IRQHandler
FLASH_IRQHandler
RCC_IRQHandler
EXTI0_IRQHandler
EXTI1_IRQHandler
EXTI2_IRQHandler
EXTI3_IRQHandler
EXTI4_IRQHandler
DMA1_Channel1_IRQHandler
DMA1_Channel2_IRQHandler
DMA1_Channel3_IRQHandler
DMA1_Channel4_IRQHandler
DMA1_Channel5_IRQHandler
DMA1_Channel6_IRQHandler
DMA1_Channel7_IRQHandler
ADC1_2_IRQHandler
USB_HP_CAN1_TX_IRQHandler
USB_LP_CAN1_RX0_IRQHandler
CAN1_RX1_IRQHandler
CAN1_SCE_IRQHandler
EXTI9_5_IRQHandler
TIM1_BRK_IRQHandler
TIM1_UP_IRQHandler
TIM1_TRG_COM_IRQHandler
TIM1_CC_IRQHandler
TIM2_IRQHandler
TIM3_IRQHandler
TIM4_IRQHandler
I2C1_EV_IRQHandler
I2C1_ER_IRQHandler
I2C2_EV_IRQHandler
I2C2_ER_IRQHandler
SPI1_IRQHandler
SPI2_IRQHandler
USART1_IRQHandler
USART2_IRQHandler
USART3_IRQHandler
EXTI15_10_IRQHandler
RTCAlarm_IRQHandler
USBWakeUp_IRQHandler
B .
ENDP
ALIGN
;*******************************************************************************
; User Stack and Heap initialization
;*******************************************************************************
IF :DEF:__MICROLIB
EXPORT __initial_sp
EXPORT __heap_base
EXPORT __heap_limit
ELSE
IMPORT __use_two_region_memory
EXPORT __user_initial_stackheap
__user_initial_stackheap
LDR R0, = Heap_Mem
LDR R1, =(Stack_Mem + Stack_Size)
LDR R2, = (Heap_Mem + Heap_Size)
LDR R3, = Stack_Mem
BX LR
ALIGN
ENDIF
END
;******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE*****

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,345 @@
/**
* Bibliotheque DriverJeuLaser (ancienne gassp72 adaptée 2021 - TR)
*
* GPIO - ADC - Sequenceur - System Timer - PWM - 72 MHz
* Modifs :
* enlèvement de tout ce qui est inutile dans le .h
* ajout de fonctions GPIO dans le .c pour utilisation en ASM ou en C :
* - GPIOA_Set(char Broche), GPIOB_Set(char Broche), GPIOC_Set(char Broche)
* - GPIOA_Clear(char Broche), GPIOB_Clear(char Broche), GPIOC_Clear(char Broche)
*
* ajout d'une fonction qui impose une valeur de PWM (TIM3_CCR3)
* PWM_Set_Value_On_TIM3_C3( int Val)
* permet en ASM ou en C de fixer la valeur de PWM
* Ajout de commentaires
*/
#ifndef DRIVERJEULASER_H__
#define DRIVERJEULASER_H__
#include "stm32f10x.h"
//**********************************************************************************************************
//--------------------- CONFIGURATION CLOCK DU STM32 --------------------------------------
//**********************************************************************************************************
/**
* @brief Configure l'ensemble des horloges du uC
* @note horloge systeme (config statique a 72 MHz pour le STM32F103)
* @param None
* @retval None
*/
void CLOCK_Configure(void);
//**********************************************************************************************************
//--------------------- LES TIMERS GENERAL PURPOSE TIM1 à TIM 4 ------------------------------
//**********************************************************************************************************
/**
* @brief Configure un Timer TIM1 à TIM4 avec une périodicité donnée
* @note L' horloge des 4 timers a une fréquence de 72MHz
* @param *Timer = TIM1 ou TIM2 ou TIM3 ou TIM4
* @param Durée_ticks : nombre de pas (tick) comptés à 72 MHz pour faire déborder le timer
* La période de débordement du Timer est donc T = Durée_ticks * Tck, avec Tck = 1/72 000 000
* @retval None
*/
void Timer_1234_Init_ff( TIM_TypeDef *Timer, u32 Duree_ticks );
/**
* Macros de base pour utiliser les timers
*/
// bloque le timer
#define Bloque_Timer(Timer) Timer->CR1=(Timer->CR1)&~(1<<0)
// Lance timer
#define Run_Timer(Timer) Timer->CR1=(Timer->CR1)|(1<<0)
/**
* @brief Associe une fonction d'interruption (callback) lors du débordement d'un timer
* @note
* @param *Timer = TIM1 ou TIM2 ou TIM3 ou TIM4
* @param Prio : niveau de priorité de l'interruption (0 -> priorité max, 15 -> priorité min)
* @param IT_function : le nom de la fonction Callback à appeler lors de l'interruption
* @retval None
*/
void Active_IT_Debordement_Timer( TIM_TypeDef *Timer, char Prio, void (*IT_function)(void) );
//*********************************************************************************************************
//--------------------- PWM TIM1 to TIM 4 ------------------------------
//*********************************************************************************************************
/**
* @brief Configure un timer en PWM
* @note
* @param *Timer = TIM1 ou TIM2 ou TIM3 ou TIM4
* @param voie : un des 4 canaux possibles 1 à 4.
* @param Periode_ticks : nombre de pas (tick) comptés à 72 MHz pour faire déborder le timer
* La période de débordement du Timer est donc T = Durée_ticks * Tck, avec Tck = 1/72 000 000
* @retval Retourne la période en tick (normalement la même que le param d'entrée sauf si PSC utilisé
*/
unsigned short int PWM_Init_ff( TIM_TypeDef *Timer, char Voie, u32 Periode_ticks );
/**
* @brief Fixe une valeur de PWM, Val, en tick horloge. La rapport cyclique effectif
* est donc : rcy = Thaut_ticks / Periode_ticks
* @note spécifique Jeu Laser, PWM liée exclusivement au TIM3, chan3
* @param Thaut_ticks : durée de l'état haut d'une impulsion en Ticks
* @retval None
*/
void PWM_Set_Value_TIM3_Ch3( unsigned short int Thaut_ticks);
//**********************************************************************************************************
//--------------------- LE SYSTICK TIMER, Part of Cortex M3 ------------------------------
//**********************************************************************************************************
/**
* @brief Configure le timer Systick avec une périodicité donnée
* @note Ce timer ne peut servir qu'à créer des temporisations ou générer des interruption
* ce n'est pas à proprement parler un périphérique, il fait partie du Cortex M3
* Ce timer est un 24 bits
* @param Periode_ticks : nombre de pas (tick) comptés à 72 MHz pour établir la périodicité
* La période de débordement du Timer est donc T = Durée_ticks * Tck, avec Tck = 1/72 000 000
* @retval None
*/
void Systick_Period_ff( unsigned int Periode_ticks );
/**
* @brief Associe une fonction d'interruption (callback) lors du débordement du Systick
* @note
* @param Prio : niveau de priorité de l'interruption (0 -> priorité max, 15 -> priorité min)
* @param IT_function : le nom de la fonction Callback à appeler lors de l'interruption
* @retval None
*/
void Systick_Prio_IT( char Prio, void (*Systick_function)(void) );
/**
* Macros de base pour utiliser le Systick
*/
#define SysTick_On ((SysTick->CTRL)=(SysTick->CTRL)|1<<0)
#define SysTick_Off ((SysTick->CTRL)=(SysTick->CTRL)& ~(1<<0))
#define SysTick_Enable_IT ((SysTick->CTRL)=(SysTick->CTRL)|1<<1)
#define SysTick_Disable_IT ((SysTick->CTRL)=(SysTick->CTRL)& ~(1<<1))
//**********************************************************************************************************
//--------------------- LE SYSTICK TIMER, Part of Cortex M3 ------------------------------
//**********************************************************************************************************
/**
* @brief Active l'ADC du STM32, configure la durée de prélèvement de l'échantillon (temps
* de fermeture du switch d'acquisition
* @note
* @param ADC : précise de quel ADC il s'agit, ADC1 ou ADC2
* @param Duree_Ech_ticks : dirée de fermeture du switch d'échantillonnage en Tick d'horloge CPU
* exemple pour 1µs on choisira 72.
* @retval Nombre de Tick réellement pris en compte
*/
unsigned int Init_TimingADC_ActiveADC_ff( ADC_TypeDef * ADC, u32 Duree_Ech_ticks );
/**
* @brief Sélectionne la voie à convertir
* @note Attention, la voie va de 0 à 15 et n'est pas directement lié au n°de GPIO
* @param ADC : précise de quel ADC il s'agit, ADC1 ou ADC2
* @param Voie_ADC : 1 à 15
* @retval None
*/
void Single_Channel_ADC( ADC_TypeDef * ADC, char Voie_ADC );
/**
* @brief Permet lier le déclenchement au débordement d'un timer, spécifie également
* la période de débordement du timer
* @note pas besoin de régler le timer avec une autre fonction dédiée timer
* @param ADC : précise de quel ADC il s'agit, ADC1 ou ADC2
* @param Source : indique le timer qui déclenche l'ADC choix dans les define ci-dessous
* @param Periode_ticks : nombre de pas (tick) comptés à 72 MHz pour faire déborder le timer
* La période de débordement du Timer est donc T = Durée_ticks * Tck, avec Tck = 1/72 000 000
* @retval None
*/
// param pour Source :
#define TIM1_CC1 0
#define TIM1_CC2 1
#define TIM1_CC3 2
#define TIM2_CC2 3
#define TIM4_CC4 5
void Init_Conversion_On_Trig_Timer_ff( ADC_TypeDef * ADC, char Source, u32 Periode_ticks );
//**********************************************************************************************************
//--------------------- ANALOG INPUT ADC & DMA ------------------------------
//**********************************************************************************************************
/**
* @brief Permer de lier l'ADC à un tableau en RAM pour une DMA
* @note
* @param Circ : circular. Si '0', en fin de DMA le ptr d'@ reste inchangé
* si '1' le ptr d'@ se recale à celle du début.
* @param Ptr_Table_DMA : contient l'@ de début de zone RAM à écrire
* @retval None
*/
void Init_ADC1_DMA1(char Circ, short int *Ptr_Table_DMA);
/**
* @brief Lance une DMA sur le nombre de points spécifie. Les resultats seront stockes
* dans la zone de RAM écrite est indiquée lors de l'appel de la fonction Init_ADC1_DMA1
* @note
* @param NbEchDMA est le nombre d'échantillons à stocker.
* @retval None
*/
void Start_DMA1( u16 NbEchDMA );
// arret DMA
#define Stop_DMA1 DMA1_Channel1->CCR =(DMA1_Channel1->CCR) &~0x1;
/**
* @brief Attend la fin d'un cycle de DMA. la duree depend de la periode d'acquisition
* et du nombre d'echantillons
* @note fonction d'attente (bloquante)
* @param None
* @retval None
*/
void Wait_On_End_Of_DMA1(void);
//**********************************************************************************************************
//--------------------- GPIO ------------------------------
//**********************************************************************************************************
/**
* @brief Initialisation d'un GPIO (A à C), pin x.
* peut être configuré :
* -> Input ou output
* -> architecture technologique (push-pull, open drain...)
* @note
* @param Port : GPIOA, GPIOB, GPIOC
* @param Broche : 0 à 15
* @param Sens : INPUT ou OUTPUT
* @param Techno : voir define ci dessous
* @retval 1 erreur, 0 si OK
*/
// Sens
#define INPUT 'i'
#define OUTPUT 'o'
// Techno pour pin en entrée (INPUT)
#define ANALOG 0
#define INPUT_FLOATING 1
#define INPUT_PULL_DOWN_UP 2
// Techno pour pin en sortie (OUTPUT)
#define OUTPUT_PPULL 0
#define OUTPUT_OPDRAIN 1
#define ALT_PPULL 2
#define ALT_OPDRAIN 3
// Exemple :
// Port_IO_Init(GPIOB, 8, OUTPUT, OUTPUT_PPULL);
// Place le bit 8 du port B en sortie Push-pull
char GPIO_Configure(GPIO_TypeDef * Port, int Broche, int Sens, int Techno);
/**
* @brief Mise à 1 d'une broche GPIO
* @note Une fonction par GPIO
* @param Broche : 0 à 15
* @retval None
*/
void GPIOA_Set(char Broche);
void GPIOB_Set(char Broche);
void GPIOC_Set(char Broche);
/**
* @brief Mise à 0 d'une broche GPIO
* @note Une fonction par GPIO
* @param Broche : 0 à 15
* @retval None
*/
void GPIOA_Clear(char Broche);
void GPIOB_Clear(char Broche);
void GPIOC_Clear(char Broche);
#endif

View file

@ -0,0 +1,56 @@
; Bibliotheque DriverJeuLaser (ancienne gassp72 adaptée 2021 - TR)
; Accès en aux fonctions suivantes :
; GPIO :
; GPIOA_Set(char Broche), GPIOB_Set(char Broche), GPIOC_Set(char Broche)
; GPIOA_Clear(char Broche), GPIOB_Clear(char Broche), GPIOC_Clear(char Broche)
; PWM :
;/**
; * @brief Fixe une valeur de PWM, Val, en tick horloge. La rapport cyclique effectif
; * est donc : rcy = Thaut_ticks / Periode_ticks
; * @note spécifique Jeu Laser, PWM liée exclusivement au TIM3, chan3
; * @param Thaut_ticks : durée de l'état haut d'une impulsion en Ticks
; * @retval None
; */
;void PWM_Set_Value_TIM3_Ch3( unsigned short int Thaut_ticks);
import PWM_Set_Value_TIM3_Ch3
;/**
; * @brief Mise à 1 d'une broche GPIO
; * @note Une fonction par GPIO
; * @param Broche : 0 à 15
; * @retval None
; */
;void GPIOA_Set(char Broche);
import GPIOA_Set
;void GPIOB_Set(char Broche);
import GPIOB_Set
;void GPIOC_Set(char Broche);
import GPIOC_Set
;/**
; * @brief Mise à 0 d'une broche GPIO
; * @note Une fonction par GPIO
; * @param Broche : 0 à 15
; * @retval None
; */
;void GPIOA_Clear(char Broche);
import GPIOA_Clear
;void GPIOB_Clear(char Broche);
import GPIOB_Clear
;void GPIOC_Clear(char Broche);
import GPIOC_Clear
end

View file

@ -0,0 +1,78 @@
/* Fichier devant contenir l'ensemble de fichiers utiles pour le projet LaserQuest
et qui concenent l'affichage sur la valise */
/* mais non disponible en version source pour les étudiants. */
#ifndef _AFFICHAGE_VALISE_H__
#define _AFFICHAGE_VALISE_H__
#include "stm32f10x.h"
/**
* @brief Initialise les périphériques nécessaires à l'affichage sur la Mallette
* et gère la cible active. S'utilise aussi avec les ùmodules affichages simple (pas de mallette)
* @note Utilise TIM1, PA5, PA6 pour les cibles, PC7 à PC9 pour SPI émulé
* utilise aussi une interruption sut TIM1, prio 8.
* @param none
* @retval None
*/
void Init_Affichage(void);
/**
* @brief Prépare l'affichage 2 digit sur l'afficheur demandé
* @note Exemple : Prepare_Afficheur(2, 99);
* prépare l'affichage de la valeur 99 sur l'afficheur n°2
* L'action est différée à l'exécution de Mise_A_Jour_Afficheurs_LED()
* @param char Aff : de 1 à 4 ; char Valeur de 0 à 99
* @retval None
*/
void Prepare_Afficheur(char Aff, char Valeur);
void Prepare_Set_Point_Unite(char Aff);
void Prepare_Clear_Point_Unite(char Aff);
/**
* @brief Prépare l'allumage de la LED demandée
* @note Exemple : Prepare_Set_LED(LED_Cible_2);
* prépare l'allumage de la LED correspondant à la cible n°2
* L'action est différée à l'exécution de Mise_A_Jour_Afficheurs_LED()
* @param voir #define ci-dessous
* @retval None
*/
void Prepare_Set_LED(char LED);
void Prepare_Clear_LED(char LED);
/**
* @brief Effectue l'action d'écriture dans le module d'affichage
* à partir de tout ce qui a é préparé auparavant.
* @note
* @param None
* @retval None
*/
void Mise_A_Jour_Afficheurs_LED(void);
/**
* @brief Spécifie le capteut actif, à savoir celui effectivement relié
* aux sorties disponibles sur la malette
* @note Exemple : Choix_Capteur(1)
* @param 1 à 4
* @retval None
*/
void Choix_Capteur(char Capteur);
// define utile pour la fonction Prepare_Set_LED et Prepare_Clear_LED
#define LED_LCD_R 5
#define LED_LCD_V 4
#define LED_Cible_4 3
#define LED_Cible_3 2
#define LED_Cible_2 1
#define LED_Cible_1 0
#endif

View file

@ -0,0 +1,250 @@
PRESERVE8
THUMB
EXPORT TabCos
EXPORT TabSin
; ====================== zone de réservation de données, ======================================
;Section RAM (read only) :
area mesdata,data,readonly
;Section RAM (read write):
area maram,data,readwrite
; ===============================================================================================
;Section ROM code (read only) :
area moncode,code,readonly
; écrire le code ici
;int DFT_ModuleAuCarre( short int * Signal64ech, char k) {
; int reelle = 0;
; int imag = 0;
; for(int i=0; i<64; i++) {
; reelle += Signal64ech[i] * TabCos[k*i];
; imag += Signal64ech[i] * TabSin[k*i];
; }
; return (imag*imag + reelle*reelle);
;}
EXPORT DFT_ModuleAuCarre
DFT_ModuleAuCarre proc
push{lr}
push{r4-r11}
;r0 adresse Signa164ech
;r1 k
;r2 Signal64ech[i]
;r3 adresse TabCos puis valeur de TabCos[k*i]
;r4 itérateur
;r5 M (64)
;r6 k*i
;r7 reelle
;r8 imag
;r9 adresse TabSin puis valeur de TabSin[k*i]
;r10 Signal64ech[i] * TabCos[k*i]
;r11 Signal64ech[i] * TabSin[k*i]
;NB il faut utiliser smull et smlal
mov r8,#0
mov r7,#0 ; init de reelle à 0 -> r7
; for(int i=0; i<64; i++)
mov r4, #0 ; r4 = 0 (init de l'itérateur)
mov r5, #63
BoucleFor
cmp r4, r5
bgt FinBoucle
; reelle += Signal64ech[i] * TabCos[k*i]; (on le décompose en plusieurs étapes)
; Signal64ech[i]
ldrsh r2, [r0, r4, lsl #1]
; TabCos[k*i]
ldr r3, =TabCos
; TabSin[k*i]
ldr r9, =TabSin
; k*i->r6
mul r6, r1, r4
;(k*i)%64
and r6,#63 ;On fait un masque pour faire mod 64
; TabCos[r6]
ldrsh r3,[r3,r6,lsl #1]
; TabSin[r6]
ldrsh r9,[r9,r6,lsl #1]
; Signal64ech[i] * TabCos[k*i]
mul r10, r2, r3
; Signal64ech[i] * TabSin[k*i]
mul r11, r2, r9
; on ajoute notre réelle et imag au calcul
add r7, r10
add r8, r11
; incrémenter l'itérateur
add r4, #1
b BoucleFor
FinBoucle
; on met le résultat à disposition dans r0
;mov r1, r7
;mov r0, r8
smull r1, r0, r7, r7 ;NB :poids fort en 2eme pos
smlal r1, r0, r8, r8 ;
pop {r4-r11}
pop {pc}
endp
;Section ROM code (read only) :
AREA Trigo, DATA, READONLY
; codage fractionnaire 1.15
TabCos
DCW 32767 ; 0 0x7fff 0.99997
DCW 32610 ; 1 0x7f62 0.99518
DCW 32138 ; 2 0x7d8a 0.98077
DCW 31357 ; 3 0x7a7d 0.95694
DCW 30274 ; 4 0x7642 0.92389
DCW 28899 ; 5 0x70e3 0.88193
DCW 27246 ; 6 0x6a6e 0.83148
DCW 25330 ; 7 0x62f2 0.77301
DCW 23170 ; 8 0x5a82 0.70709
DCW 20788 ; 9 0x5134 0.63440
DCW 18205 ; 10 0x471d 0.55557
DCW 15447 ; 11 0x3c57 0.47141
DCW 12540 ; 12 0x30fc 0.38269
DCW 9512 ; 13 0x2528 0.29028
DCW 6393 ; 14 0x18f9 0.19510
DCW 3212 ; 15 0x0c8c 0.09802
DCW 0 ; 16 0x0000 0.00000
DCW -3212 ; 17 0xf374 -0.09802
DCW -6393 ; 18 0xe707 -0.19510
DCW -9512 ; 19 0xdad8 -0.29028
DCW -12540 ; 20 0xcf04 -0.38269
DCW -15447 ; 21 0xc3a9 -0.47141
DCW -18205 ; 22 0xb8e3 -0.55557
DCW -20788 ; 23 0xaecc -0.63440
DCW -23170 ; 24 0xa57e -0.70709
DCW -25330 ; 25 0x9d0e -0.77301
DCW -27246 ; 26 0x9592 -0.83148
DCW -28899 ; 27 0x8f1d -0.88193
DCW -30274 ; 28 0x89be -0.92389
DCW -31357 ; 29 0x8583 -0.95694
DCW -32138 ; 30 0x8276 -0.98077
DCW -32610 ; 31 0x809e -0.99518
DCW -32768 ; 32 0x8000 -1.00000
DCW -32610 ; 33 0x809e -0.99518
DCW -32138 ; 34 0x8276 -0.98077
DCW -31357 ; 35 0x8583 -0.95694
DCW -30274 ; 36 0x89be -0.92389
DCW -28899 ; 37 0x8f1d -0.88193
DCW -27246 ; 38 0x9592 -0.83148
DCW -25330 ; 39 0x9d0e -0.77301
DCW -23170 ; 40 0xa57e -0.70709
DCW -20788 ; 41 0xaecc -0.63440
DCW -18205 ; 42 0xb8e3 -0.55557
DCW -15447 ; 43 0xc3a9 -0.47141
DCW -12540 ; 44 0xcf04 -0.38269
DCW -9512 ; 45 0xdad8 -0.29028
DCW -6393 ; 46 0xe707 -0.19510
DCW -3212 ; 47 0xf374 -0.09802
DCW 0 ; 48 0x0000 0.00000
DCW 3212 ; 49 0x0c8c 0.09802
DCW 6393 ; 50 0x18f9 0.19510
DCW 9512 ; 51 0x2528 0.29028
DCW 12540 ; 52 0x30fc 0.38269
DCW 15447 ; 53 0x3c57 0.47141
DCW 18205 ; 54 0x471d 0.55557
DCW 20788 ; 55 0x5134 0.63440
DCW 23170 ; 56 0x5a82 0.70709
DCW 25330 ; 57 0x62f2 0.77301
DCW 27246 ; 58 0x6a6e 0.83148
DCW 28899 ; 59 0x70e3 0.88193
DCW 30274 ; 60 0x7642 0.92389
DCW 31357 ; 61 0x7a7d 0.95694
DCW 32138 ; 62 0x7d8a 0.98077
DCW 32610 ; 63 0x7f62 0.99518
TabSin
DCW 0 ; 0 0x0000 0.00000
DCW 3212 ; 1 0x0c8c 0.09802
DCW 6393 ; 2 0x18f9 0.19510
DCW 9512 ; 3 0x2528 0.29028
DCW 12540 ; 4 0x30fc 0.38269
DCW 15447 ; 5 0x3c57 0.47141
DCW 18205 ; 6 0x471d 0.55557
DCW 20788 ; 7 0x5134 0.63440
DCW 23170 ; 8 0x5a82 0.70709
DCW 25330 ; 9 0x62f2 0.77301
DCW 27246 ; 10 0x6a6e 0.83148
DCW 28899 ; 11 0x70e3 0.88193
DCW 30274 ; 12 0x7642 0.92389
DCW 31357 ; 13 0x7a7d 0.95694
DCW 32138 ; 14 0x7d8a 0.98077
DCW 32610 ; 15 0x7f62 0.99518
DCW 32767 ; 16 0x7fff 0.99997
DCW 32610 ; 17 0x7f62 0.99518
DCW 32138 ; 18 0x7d8a 0.98077
DCW 31357 ; 19 0x7a7d 0.95694
DCW 30274 ; 20 0x7642 0.92389
DCW 28899 ; 21 0x70e3 0.88193
DCW 27246 ; 22 0x6a6e 0.83148
DCW 25330 ; 23 0x62f2 0.77301
DCW 23170 ; 24 0x5a82 0.70709
DCW 20788 ; 25 0x5134 0.63440
DCW 18205 ; 26 0x471d 0.55557
DCW 15447 ; 27 0x3c57 0.47141
DCW 12540 ; 28 0x30fc 0.38269
DCW 9512 ; 29 0x2528 0.29028
DCW 6393 ; 30 0x18f9 0.19510
DCW 3212 ; 31 0x0c8c 0.09802
DCW 0 ; 32 0x0000 0.00000
DCW -3212 ; 33 0xf374 -0.09802
DCW -6393 ; 34 0xe707 -0.19510
DCW -9512 ; 35 0xdad8 -0.29028
DCW -12540 ; 36 0xcf04 -0.38269
DCW -15447 ; 37 0xc3a9 -0.47141
DCW -18205 ; 38 0xb8e3 -0.55557
DCW -20788 ; 39 0xaecc -0.63440
DCW -23170 ; 40 0xa57e -0.70709
DCW -25330 ; 41 0x9d0e -0.77301
DCW -27246 ; 42 0x9592 -0.83148
DCW -28899 ; 43 0x8f1d -0.88193
DCW -30274 ; 44 0x89be -0.92389
DCW -31357 ; 45 0x8583 -0.95694
DCW -32138 ; 46 0x8276 -0.98077
DCW -32610 ; 47 0x809e -0.99518
DCW -32768 ; 48 0x8000 -1.00000
DCW -32610 ; 49 0x809e -0.99518
DCW -32138 ; 50 0x8276 -0.98077
DCW -31357 ; 51 0x8583 -0.95694
DCW -30274 ; 52 0x89be -0.92389
DCW -28899 ; 53 0x8f1d -0.88193
DCW -27246 ; 54 0x9592 -0.83148
DCW -25330 ; 55 0x9d0e -0.77301
DCW -23170 ; 56 0xa57e -0.70709
DCW -20788 ; 57 0xaecc -0.63440
DCW -18205 ; 58 0xb8e3 -0.55557
DCW -15447 ; 59 0xc3a9 -0.47141
DCW -12540 ; 60 0xcf04 -0.38269
DCW -9512 ; 61 0xdad8 -0.29028
DCW -6393 ; 62 0xe707 -0.19510
DCW -3212 ; 63 0xf374 -0.09802
END

View file

@ -0,0 +1,68 @@
AREA Signal, DATA, READONLY
export LeSignal
LeSignal
DCW 0x0fff ; 0 4095 0.99976
DCW 0x0ff6 ; 1 4086 0.99756
DCW 0x0fd9 ; 2 4057 0.99048
DCW 0x0fa8 ; 3 4008 0.97852
DCW 0x0f64 ; 4 3940 0.96191
DCW 0x0f0e ; 5 3854 0.94092
DCW 0x0ea7 ; 6 3751 0.91577
DCW 0x0e2f ; 7 3631 0.88647
DCW 0x0da8 ; 8 3496 0.85352
DCW 0x0d13 ; 9 3347 0.81714
DCW 0x0c72 ; 10 3186 0.77783
DCW 0x0bc5 ; 11 3013 0.73560
DCW 0x0b10 ; 12 2832 0.69141
DCW 0x0a53 ; 13 2643 0.64526
DCW 0x0990 ; 14 2448 0.59766
DCW 0x08c9 ; 15 2249 0.54907
DCW 0x0800 ; 16 2048 0.50000
DCW 0x0737 ; 17 1847 0.45093
DCW 0x0670 ; 18 1648 0.40234
DCW 0x05ad ; 19 1453 0.35474
DCW 0x04f0 ; 20 1264 0.30859
DCW 0x043b ; 21 1083 0.26440
DCW 0x038e ; 22 910 0.22217
DCW 0x02ed ; 23 749 0.18286
DCW 0x0258 ; 24 600 0.14648
DCW 0x01d1 ; 25 465 0.11353
DCW 0x0159 ; 26 345 0.08423
DCW 0x00f2 ; 27 242 0.05908
DCW 0x009c ; 28 156 0.03809
DCW 0x0058 ; 29 88 0.02148
DCW 0x0027 ; 30 39 0.00952
DCW 0x000a ; 31 10 0.00244
DCW 0x0000 ; 32 0 0.00000
DCW 0x000a ; 33 10 0.00244
DCW 0x0027 ; 34 39 0.00952
DCW 0x0058 ; 35 88 0.02148
DCW 0x009c ; 36 156 0.03809
DCW 0x00f2 ; 37 242 0.05908
DCW 0x0159 ; 38 345 0.08423
DCW 0x01d1 ; 39 465 0.11353
DCW 0x0258 ; 40 600 0.14648
DCW 0x02ed ; 41 749 0.18286
DCW 0x038e ; 42 910 0.22217
DCW 0x043b ; 43 1083 0.26440
DCW 0x04f0 ; 44 1264 0.30859
DCW 0x05ad ; 45 1453 0.35474
DCW 0x0670 ; 46 1648 0.40234
DCW 0x0737 ; 47 1847 0.45093
DCW 0x0800 ; 48 2048 0.50000
DCW 0x08c9 ; 49 2249 0.54907
DCW 0x0990 ; 50 2448 0.59766
DCW 0x0a53 ; 51 2643 0.64526
DCW 0x0b10 ; 52 2832 0.69141
DCW 0x0bc5 ; 53 3013 0.73560
DCW 0x0c72 ; 54 3186 0.77783
DCW 0x0d13 ; 55 3347 0.81714
DCW 0x0da8 ; 56 3496 0.85352
DCW 0x0e2f ; 57 3631 0.88647
DCW 0x0ea7 ; 58 3751 0.91577
DCW 0x0f0e ; 59 3854 0.94092
DCW 0x0f64 ; 60 3940 0.96191
DCW 0x0fa8 ; 61 4008 0.97852
DCW 0x0fd9 ; 62 4057 0.99048
DCW 0x0ff6 ; 63 4086 0.99756
END

View file

@ -0,0 +1,38 @@
clc
clear
N = input('Nombre d''échantilllons pour ce signal : ');
Frel = input('Fréquence normalisée (nombre de périodes dans la durée totale) : ');
Ph0 = input('Phase a l''origine (en degrés) : ');
Ph0 = Ph0 * pi / 180.0; % a present en radian
Ampl = 2048;
Offset = 2048;
%% Création du fichier .asm
fileID = fopen(['Signal.asm'], 'w');
fprintf(fileID,'\tAREA Signal, DATA, READONLY\n');
fprintf(fileID,'\texport LeSignal\n');
fprintf(fileID,'LeSignal\n');
for i = 1: N
% fonction a modifier en fonction des besoins
Sig(i) = Offset + Ampl * cos( 2*pi*Frel*(i-1)/N + Ph0 );
% arrondi
iSig = int16(Sig(i));
% bornage du signal similaire a la sortie brute de l'ADC 12 bits
if ( iSig < 0 )
iSig = 0;
end
if ( iSig > 4095 )
iSig = 4095;
end
fprintf(fileID,'\tDCW\t0x%04x\t; %2d %4d %7.5f\n',iSig, i-1, iSig, double(iSig) / 4096.0 );
end
fprintf(fileID,'\tEND\n');
fclose(fileID);
plot(Sig);

View file

@ -0,0 +1,131 @@
#include "DriverJeuLaser.h"
#include "Affichage_Valise.h"
extern short int LeSignal[];
extern int DFT_ModuleAuCarre( short int * Signal64ech, char k);
int moduleSignal[4] ;
short int dma_buf[64] ;
int score[4] = {0,0,0,0};
int cnt[4] = {0,0,0,0};
int ordreCible[15] = {1,3,4,2,4,3,1,4,3,2,1,2,3,4} ;
int clk5Hz = 0;
int i = 0;
void miseAJourScores(int score0, int score1, int score2, int score3) {
Prepare_Afficheur(1, score0);
Prepare_Afficheur(2, score1);
Prepare_Afficheur(3, score2);
Prepare_Afficheur(4, score3);
}
void callback() {
clk5Hz += 1;
Start_DMA1(64);
Wait_On_End_Of_DMA1();
Stop_DMA1;
moduleSignal[0] = DFT_ModuleAuCarre(&(dma_buf[0]), 17);
moduleSignal[1] = DFT_ModuleAuCarre(&(dma_buf[0]), 18);
moduleSignal[2] = DFT_ModuleAuCarre(&(dma_buf[0]), 19);
moduleSignal[3] = DFT_ModuleAuCarre(&(dma_buf[0]), 20);
// Choisir à qui attribuer les points
if (moduleSignal[0] > 10000) {
cnt[0]+=1;
if (cnt[0] >= 15) {
score[0] +=1;
cnt[0]=0;
}
} else {cnt[0]=0;}
if (moduleSignal[1] > 10000) {
cnt[1]+=1;
if (cnt[1] >= 15) {
score[1] +=1;
cnt[1]=0;
}
} else {cnt[1]=0;}
if (moduleSignal[2] > 10000) {
cnt[2]+=1;
if (cnt[2] >= 15) {
score[2] +=1;
cnt[2]=0;
}
} else {cnt[2]=0;}
if (moduleSignal[3] > 10000) {
cnt[3]+=1;
if (cnt[3] >= 15) {
score[3] +=1;
cnt[3]=0;
}
} else {cnt[3]=0;}
// Pour ne changer de cible que toutes les 2 sec (2000/5 = 400)
if (clk5Hz %400 ==0) {
i = (i+1)%15;
if (i == 0){
Choix_Capteur(ordreCible[i]);
Prepare_Clear_LED(ordreCible[14]-1);
Prepare_Set_LED(ordreCible[i]-1);
}else{
Choix_Capteur(ordreCible[i]);
Prepare_Clear_LED(ordreCible[i-1]-1);
Prepare_Set_LED(ordreCible[i]-1);
}
}
//Pour mise a jour régulière des scores
miseAJourScores(score[0],score[1],score[2],score[3]);
Mise_A_Jour_Afficheurs_LED();
}
int main(void)
{
// ===========================================================================
// ============= INIT PERIPH (faites qu'une seule fois) =====================
// ===========================================================================
// Après exécution : le coeur CPU est clocké à 72MHz ainsi que tous les timers
CLOCK_Configure();
//Configuration intéruptions timer
Systick_Period_ff(5000*72);
Systick_Prio_IT(11, callback );
SysTick_On ;
SysTick_Enable_IT ;
//Configuration
Init_TimingADC_ActiveADC_ff( ADC1, 72 ) ;
Single_Channel_ADC( ADC1, 2 );
Init_Conversion_On_Trig_Timer_ff( ADC1, TIM2_CC2, 225 );
Init_ADC1_DMA1( 0, dma_buf );
//La malette
Init_Affichage();
Choix_Capteur(1);
Prepare_Set_LED(LED_Cible_1);
//============================================================================
while (1) {
}
}

View file

@ -0,0 +1,335 @@
;******************** (C) COPYRIGHT 2011 STMicroelectronics ********************
;* File Name : startup_stm32f10x_md.s
;* Author : MCD Application Team
;* Version : V3.5.0
;* Date : 11-March-2011
;* Description : STM32F10x Medium Density Devices vector table for MDK-ARM
;* toolchain.
;* This module performs:
;* - Set the initial SP
;* - Set the initial PC == Reset_Handler
;* - Set the vector table entries with the exceptions ISR address
;* - Configure the clock system
;* - Branches to __main in the C library (which eventually
;* calls main()).
;* After Reset the CortexM3 processor is in Thread mode,
;* priority is Privileged, and the Stack is set to Main.
;* <<< Use Configuration Wizard in Context Menu >>>
;*******************************************************************************
; THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
; WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME.
; AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY DIRECT,
; INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM THE
; CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE CODING
; INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
;*******************************************************************************
; Amount of memory (in bytes) allocated for Stack
; Tailor this value to your application needs
; <h> Stack Configuration
; <o> Stack Size (in Bytes) <0x0-0xFFFFFFFF:8>
; </h>
Stack_Size EQU 0x00000400
AREA STACK, NOINIT, READWRITE, ALIGN=3
Stack_Mem SPACE Stack_Size
__initial_sp
; <h> Heap Configuration
; <o> Heap Size (in Bytes) <0x0-0xFFFFFFFF:8>
; </h>
Heap_Size EQU 0x00000200
AREA HEAP, NOINIT, READWRITE, ALIGN=3
__heap_base
Heap_Mem SPACE Heap_Size
__heap_limit
PRESERVE8
THUMB
; Vector Table Mapped to Address 0 at Reset
AREA RESET, DATA, READONLY
EXPORT __Vectors
EXPORT __Vectors_End
EXPORT __Vectors_Size
__Vectors DCD __initial_sp ; Top of Stack
DCD Reset_Handler ; Reset Handler
DCD NMI_Handler ; NMI Handler
DCD HardFault_Handler ; Hard Fault Handler
DCD MemManage_Handler ; MPU Fault Handler
DCD BusFault_Handler ; Bus Fault Handler
DCD UsageFault_Handler ; Usage Fault Handler
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD SVC_Handler ; SVCall Handler
DCD DebugMon_Handler ; Debug Monitor Handler
DCD 0 ; Reserved
DCD PendSV_Handler ; PendSV Handler
DCD SysTick_Handler ; SysTick Handler
; External Interrupts
DCD WWDG_IRQHandler ; Window Watchdog
DCD PVD_IRQHandler ; PVD through EXTI Line detect
DCD TAMPER_IRQHandler ; Tamper
DCD RTC_IRQHandler ; RTC
DCD FLASH_IRQHandler ; Flash
DCD RCC_IRQHandler ; RCC
DCD EXTI0_IRQHandler ; EXTI Line 0
DCD EXTI1_IRQHandler ; EXTI Line 1
DCD EXTI2_IRQHandler ; EXTI Line 2
DCD EXTI3_IRQHandler ; EXTI Line 3
DCD EXTI4_IRQHandler ; EXTI Line 4
DCD DMA1_Channel1_IRQHandler ; DMA1 Channel 1
DCD DMA1_Channel2_IRQHandler ; DMA1 Channel 2
DCD DMA1_Channel3_IRQHandler ; DMA1 Channel 3
DCD DMA1_Channel4_IRQHandler ; DMA1 Channel 4
DCD DMA1_Channel5_IRQHandler ; DMA1 Channel 5
DCD DMA1_Channel6_IRQHandler ; DMA1 Channel 6
DCD DMA1_Channel7_IRQHandler ; DMA1 Channel 7
DCD ADC1_2_IRQHandler ; ADC1_2
DCD USB_HP_CAN1_TX_IRQHandler ; USB High Priority or CAN1 TX
DCD USB_LP_CAN1_RX0_IRQHandler ; USB Low Priority or CAN1 RX0
DCD CAN1_RX1_IRQHandler ; CAN1 RX1
DCD CAN1_SCE_IRQHandler ; CAN1 SCE
DCD EXTI9_5_IRQHandler ; EXTI Line 9..5
DCD TIM1_BRK_IRQHandler ; TIM1 Break
DCD TIM1_UP_IRQHandler ; TIM1 Update
DCD TIM1_TRG_COM_IRQHandler ; TIM1 Trigger and Commutation
DCD TIM1_CC_IRQHandler ; TIM1 Capture Compare
DCD TIM2_IRQHandler ; TIM2
DCD TIM3_IRQHandler ; TIM3
DCD TIM4_IRQHandler ; TIM4
DCD I2C1_EV_IRQHandler ; I2C1 Event
DCD I2C1_ER_IRQHandler ; I2C1 Error
DCD I2C2_EV_IRQHandler ; I2C2 Event
DCD I2C2_ER_IRQHandler ; I2C2 Error
DCD SPI1_IRQHandler ; SPI1
DCD SPI2_IRQHandler ; SPI2
DCD USART1_IRQHandler ; USART1
DCD USART2_IRQHandler ; USART2
DCD USART3_IRQHandler ; USART3
DCD EXTI15_10_IRQHandler ; EXTI Line 15..10
DCD RTCAlarm_IRQHandler ; RTC Alarm through EXTI Line
DCD USBWakeUp_IRQHandler ; USB Wakeup from suspend
__Vectors_End
__Vectors_Size EQU __Vectors_End - __Vectors
AREA |.text|, CODE, READONLY
; Reset handler
Reset_Handler PROC
EXPORT Reset_Handler [WEAK]
IMPORT __main
LDR R0, =SystemInit
BLX R0
;
; Enable UsageFault, MemFault and Busfault interrupts
;
_SHCSR EQU 0xE000ED24 ; SHCSR is located at address 0xE000ED24
LDR.W R0, =_SHCSR
LDR R1, [R0] ; Read CPACR
ORR R1, R1, #(0x7 << 16) ; Set bits 16,17,18 to enable usagefault, busfault, memfault interrupts
STR R1, [R0] ; Write back the modified value to the CPACR
DSB ; Wait for store to complete
;
; Set priority grouping (PRIGROUP) in AIRCR to 3 (16 levels for group priority and 0 for subpriority)
;
_AIRCR EQU 0xE000ED0C
_AIRCR_VAL EQU 0x05FA0300
LDR.W R0, =_AIRCR
LDR.W R1, =_AIRCR_VAL
STR R1,[R0]
;
; Finaly, jump to main function (void main (void))
;
LDR R0, =__main
BX R0
ENDP
SystemInit PROC
EXPORT SystemInit [WEAK]
BX LR
ENDP
; Dummy Exception Handlers (infinite loops which can be modified)
NMI_Handler PROC
EXPORT NMI_Handler [WEAK]
B .
ENDP
HardFault_Handler\
PROC
EXPORT HardFault_Handler [WEAK]
B .
ENDP
MemManage_Handler\
PROC
EXPORT MemManage_Handler [WEAK]
B .
ENDP
BusFault_Handler\
PROC
EXPORT BusFault_Handler [WEAK]
B .
ENDP
UsageFault_Handler\
PROC
EXPORT UsageFault_Handler [WEAK]
B .
ENDP
SVC_Handler PROC
EXPORT SVC_Handler [WEAK]
B .
ENDP
DebugMon_Handler\
PROC
EXPORT DebugMon_Handler [WEAK]
B .
ENDP
PendSV_Handler PROC
EXPORT PendSV_Handler [WEAK]
B .
ENDP
SysTick_Handler PROC
EXPORT SysTick_Handler [WEAK]
B .
ENDP
Default_Handler PROC
EXPORT WWDG_IRQHandler [WEAK]
EXPORT PVD_IRQHandler [WEAK]
EXPORT TAMPER_IRQHandler [WEAK]
EXPORT RTC_IRQHandler [WEAK]
EXPORT FLASH_IRQHandler [WEAK]
EXPORT RCC_IRQHandler [WEAK]
EXPORT EXTI0_IRQHandler [WEAK]
EXPORT EXTI1_IRQHandler [WEAK]
EXPORT EXTI2_IRQHandler [WEAK]
EXPORT EXTI3_IRQHandler [WEAK]
EXPORT EXTI4_IRQHandler [WEAK]
EXPORT DMA1_Channel1_IRQHandler [WEAK]
EXPORT DMA1_Channel2_IRQHandler [WEAK]
EXPORT DMA1_Channel3_IRQHandler [WEAK]
EXPORT DMA1_Channel4_IRQHandler [WEAK]
EXPORT DMA1_Channel5_IRQHandler [WEAK]
EXPORT DMA1_Channel6_IRQHandler [WEAK]
EXPORT DMA1_Channel7_IRQHandler [WEAK]
EXPORT ADC1_2_IRQHandler [WEAK]
EXPORT USB_HP_CAN1_TX_IRQHandler [WEAK]
EXPORT USB_LP_CAN1_RX0_IRQHandler [WEAK]
EXPORT CAN1_RX1_IRQHandler [WEAK]
EXPORT CAN1_SCE_IRQHandler [WEAK]
EXPORT EXTI9_5_IRQHandler [WEAK]
EXPORT TIM1_BRK_IRQHandler [WEAK]
EXPORT TIM1_UP_IRQHandler [WEAK]
EXPORT TIM1_TRG_COM_IRQHandler [WEAK]
EXPORT TIM1_CC_IRQHandler [WEAK]
EXPORT TIM2_IRQHandler [WEAK]
EXPORT TIM3_IRQHandler [WEAK]
EXPORT TIM4_IRQHandler [WEAK]
EXPORT I2C1_EV_IRQHandler [WEAK]
EXPORT I2C1_ER_IRQHandler [WEAK]
EXPORT I2C2_EV_IRQHandler [WEAK]
EXPORT I2C2_ER_IRQHandler [WEAK]
EXPORT SPI1_IRQHandler [WEAK]
EXPORT SPI2_IRQHandler [WEAK]
EXPORT USART1_IRQHandler [WEAK]
EXPORT USART2_IRQHandler [WEAK]
EXPORT USART3_IRQHandler [WEAK]
EXPORT EXTI15_10_IRQHandler [WEAK]
EXPORT RTCAlarm_IRQHandler [WEAK]
EXPORT USBWakeUp_IRQHandler [WEAK]
WWDG_IRQHandler
PVD_IRQHandler
TAMPER_IRQHandler
RTC_IRQHandler
FLASH_IRQHandler
RCC_IRQHandler
EXTI0_IRQHandler
EXTI1_IRQHandler
EXTI2_IRQHandler
EXTI3_IRQHandler
EXTI4_IRQHandler
DMA1_Channel1_IRQHandler
DMA1_Channel2_IRQHandler
DMA1_Channel3_IRQHandler
DMA1_Channel4_IRQHandler
DMA1_Channel5_IRQHandler
DMA1_Channel6_IRQHandler
DMA1_Channel7_IRQHandler
ADC1_2_IRQHandler
USB_HP_CAN1_TX_IRQHandler
USB_LP_CAN1_RX0_IRQHandler
CAN1_RX1_IRQHandler
CAN1_SCE_IRQHandler
EXTI9_5_IRQHandler
TIM1_BRK_IRQHandler
TIM1_UP_IRQHandler
TIM1_TRG_COM_IRQHandler
TIM1_CC_IRQHandler
TIM2_IRQHandler
TIM3_IRQHandler
TIM4_IRQHandler
I2C1_EV_IRQHandler
I2C1_ER_IRQHandler
I2C2_EV_IRQHandler
I2C2_ER_IRQHandler
SPI1_IRQHandler
SPI2_IRQHandler
USART1_IRQHandler
USART2_IRQHandler
USART3_IRQHandler
EXTI15_10_IRQHandler
RTCAlarm_IRQHandler
USBWakeUp_IRQHandler
B .
ENDP
ALIGN
;*******************************************************************************
; User Stack and Heap initialization
;*******************************************************************************
IF :DEF:__MICROLIB
EXPORT __initial_sp
EXPORT __heap_base
EXPORT __heap_limit
ELSE
IMPORT __use_two_region_memory
EXPORT __user_initial_stackheap
__user_initial_stackheap
LDR R0, = Heap_Mem
LDR R1, =(Stack_Mem + Stack_Size)
LDR R2, = (Heap_Mem + Heap_Size)
LDR R3, = Stack_Mem
BX LR
ALIGN
ENDIF
END
;******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE*****

File diff suppressed because it is too large Load diff

View file

@ -1,70 +1,4 @@
# chti23
**Si vous ouvrez ce fichier README.md avec `Visual Code Studio`, faites CTRL+K,V pour visualiser le contenu.**
Dépôt commun pour le BE chti :
Chaque binome travaille sur ça branche de type grpE_NOM1_NOM2.
## Guide de travail Git
---
Une fois l'[installation](#installation) et la branche faite voilà le *workflow* conseillé en TP chez soi à chaque séance de travail.
1) Vérifier que l'on est bien sur sa branche grpX_NOM1_NOM2 (sinon faire git checkout NOMDEBREANCHE) et récuppérer tout ce qu'il y a de nouveau sur le dépôt :
<code sh>
git status
git pull
</code>
Là normalement il n'y a pas de conflit... Sinon il faudra les régler et faire un commit (demander à chatGPT ou au prof)
2) Vous travaillez et modifiez vos fichiers en local.
3) A la fin d'une séance de travail ou d'une étape il faut enregistrer une version nouvelle de son travail (faire un "commit") et pour cela ajouter les nouveautés à enregistrer (faire des "add"). Un git status permet de voir ou on en est et faire ses add. On peut aveuglément tout ajouter.
<code shell>
git pull
git status
git add * --dry-run
</code>
Là vérifier ce que dit le `dry-run` (essai à vide) et que tout ira bien. N'ajouter que du code source pas de fichiers générés parasites etc.
<code shell>
git add *
git commit -am "TP1 pas fini de rien comprendre"
git push
</code>
## Installation
___
Pour celles qui conaisse git voilà le résumé :
<code bash>
git clone https://git.etud.insa-toulouse.fr/VOTRE_COMPTE/chti23.git
</code>
### Clone
---
* Lancez git bash : "menu windows tapez Git et sélectionnez Git Bash" pour vérifier qu'il est bien installé
* Placez vous où bon vous semble et faites un clic droit puis `Git Bash Here`, puis faite un clone du dépot git (hébergé par l'INSA grâce aux étudiantes du club Info) avec la ligne de commande :
<code bash>
git clone https://git.etud.insa-toulouse.fr/VOTRE_COMPTE/chti23.git
</code>
* Pour vérifier, naviguer dans le répertoire `chti23`, faites un clic droit et `Git Bash Here` et tentez de faire la fameuse commande :
<code bash>
git status
</code>
> Il se peut qu'un message parlant de **répertoire non secure** s'affiche et propose une ligne de commande dans le message qui doit resembler à :
> git config --global --add safe.directory '%(prefix)///netapp1/GNIAGNIAGNIA...'
> Faites un copier-coller de cette commande et exécutez-la.
> La commande git status doit enfin fonctionner
Les fichiers sont visibles et partagés !
bechti ramara cros